ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:106KB ,
资源ID:5449010      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5449010.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1. 12 反比例函数 教案(华东师大版八年级下).doc)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

1. 12 反比例函数 教案(华东师大版八年级下).doc

1、实际问题与反比例函数(2)教案一、教学目标1利用反比例函数的知识分析、解决实际问题2渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型二、重点、难点1重点:利用反比例函数的知识分析、解决实际问题2难点:分析实际问题中的数量关系,正确写出函数解析式 ,解决实际问题三、例题的意图分析教材第 58 页的例 3 和例 4 都需要用到物理知识,教材在例题前已给出了相关的基本公式,其中的数量关系具有反比例关系,通过对这两个问题的分析和解决,不但能复习巩固反比例函数的有关知识,还能培养学生应用数学的意识补充例题是一 道综合题,有一定难度,需要学生有 较强的识图、分析和

2、归纳等方面的能力,此题既有一次函数的知识,又有反比例函数的知识,能进一步深化学生对一次函数和反比例函数知识的理解和掌握,体会数形结合思想的重要作用,同时提高学生灵活运用函数观点去分析和解决实际问题的能力四、课堂引入1小明家新买了几桶墙面漆,准备重新粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么?2台灯的亮度、电风扇的转速都可以调节,你能说出其中的道理吗?五、例习题分析例 3见教材第 58 页分析:题中已知阻力与阻力 臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式,得到函数动力 F 是自变量动力臂 l的反比例函数,当 l1.5 时,代入解

3、析式中求 F 的值;(2)问要利用反比例函数的性质,l越大 F 越小,先求出当 F200 时,其相应的 l值的大小,从而得出结果。例 4见教材第 59 页分析:根据物理公式 PRU 2,当电压 U 一定时,输出功率 P 是电阻 R 的反比例函数,则 RP20, (2)问中是已知自变量 R 的取值范围,即 110R220,求函数 P 的取值范围,根据反比例函数的性质,电阻越大则功率越小,得 220P440例 1 ( 补充)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量 y(毫克)与时间 x(分钟)成为正比例,药物燃烧后,y与 x 成反比例(如图),

4、现测得药物 8 分钟燃毕,此时室内空气中每立方米的含药量 6 毫克,请根据题中所提供的信 息,解答下列 问题:(1)药物燃烧时,y 关于 x 的函数关系式为 ,自变量 x 的取值范为 ;药物燃烧后,y 关于 x 的函数关系式为 .(2)研究表明,当空气 中每立方米的含药量低于 1.6 毫克时员工方可进办公室,那么从消毒开始,至少需要经过_分钟后,员工才能回到办公室;(3)研究表明,当空气中每立方米的含药量不低于 3 毫克且持续时间不低于 10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?分析:(1)药物燃烧时,由图象可知函数 y 是 x 的正比例函数,设 xky1,将点(8

5、,6)代人解析式,求得 xy43,自变量 0x8;药物燃烧后,由图象看出 y 是 x 的反比例函数,设 xk2,用待定系数法求得 xy48(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因 此,只能在燃烧后的某一时间进入办公室,先将药含 量 y1.6 代入 ,求出 x30,根据反比例函数的图象与性质知药含量 y 随时间 x 的增大而减小,求得时间至少要 30 分钟(3)药物燃烧过程中,药含量逐渐增加,当 y3 时,代入 y43中,得 x4,即当药物燃烧 4 分钟时,药含量达到 3 毫克;药物燃烧后,药含量由最高 6 毫克逐渐减少,其间还能达到 3 毫克,所以当 y3 时,代入 x48,得

6、 x16,持续时间为1641210,因此消毒有效六、随堂练习1某厂现有 800 吨煤,这些煤能烧的天数 y 与平均每天烧的吨数 x 之间的函数关系是( )(A) xy30(x0) (B) x30(x0)(C)y300x(x 0) (D)y300x(x0)2已知甲、乙两地相 s(千米) ,汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为 a(升) ,那么从甲地到乙地汽车的总耗油量 y(升)与汽车的行驶速度 v(千米/时)的函数图象大致是( )3你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识,一定体积的面团做成拉面,面条的总长度 y(m)是面条的粗细(横截面积)S(mm 2)的反比例函数,其图象如图所示:(1)写出 y 与 S 的函数关系式;(2)求当 面条粗 1.6mm2时,面条的总长度是多少米?七课后练习一场暴雨过后,一洼地存雨水 20 米 3,如果将雨水全部排完需 t 分钟,排水量为 a 米 3/分,且排水时间为 510 分钟(1)试 写出 t 与 a 的函数关系式,并指出 a 的取值范围;(2)请画出函数图象(3)根据图象回答:当排水量为 3 米 3/分时,排水的时间需要多长?课后反思:

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报