ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:486KB ,
资源ID:533291      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-533291.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(苏教版必修1必备40课时学案:3《子集、全集、补集》.doc)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

苏教版必修1必备40课时学案:3《子集、全集、补集》.doc

1、第 3 课时 子集、全集、补集(一)【学习目标】1了解集合之间包含关系的意义; 2理解子集、真子集的概念和掌握它们的符号表示;3子集、真子集的性质【课前导学】一、复习回顾表示集合常有两种方法:_法和_法_法就是把集合的所有元素一一列举出来,并用_号“_”起来;_法是用集合所含元素的共同特征表示集合的方法,具体的方法是:在_号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条_,在此后面写出这个集合中元素所具有的_性质.二、巩固练习1、用列举法表示下列集合: -1,1,232| 0xx数字和为 5 的两位数 14,23,32,41 ,502、用描述法表示集合: ,2345*1|,5

2、xnN且3、用列举法表示:“与 2 相差 3 的所有整数所组成的集合”=-1,5|3xZ三、问题情境【问题】观察下列两组集合,说出集合 A 与集合 B 的关系(共性)(1 ) A=-1,1,B=-1,0 ,1 ,2 ; (2 )A=N ,B=R;(3 ) A= 为北京人,B= 为中国人 ; (4)A ,B0xx【设问】集合 A 中的任何一个元素都是集合 B 的元素吗?【课堂活动】一、建构数学:通过观察上述集合间具有如下特殊性:(1)集合 A 的元素-1,1 同时是集合 B 的元素;(2)集合 A 中所有元素,都是集合 B 的元素;(3)集合 A 中所有元素都是集合 B 的元素;(4)A 中没有

3、元素,而 B 中含有一个元素 0,自然 A 中“元素”也是 B 中元素.由上述特殊性可得其一般性,即集合 A 都是集合 B 的一部分.从而有下述结论.1.子集:【定义】一般地,对于两个集合 A 与 B,如果集合 A 中的任何一个元素都是集合 B 的元素,我们就说集合 A 包含于集合 B,或集合 B 包含集合 A.记作 A B(或 B A) ,这时我们也说集合 A 是集合 B 的子集.请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.2 真子集:对于两个集合 A 与 B,如果 ,并且 ,我们就说集合 A 是集合 B 的真子集,记作:A B 或 B A, 读作 A 真包含于 B 或

4、B 真包含 A这应理解为:若 A B,且存在 bB,但 b A,称 A 是 B 的真子集.【注意】(1 )子集与真子集符号的方向(2 )当集合 A 不包含于集合 B,或集合 B 不包含集合 A 时,则记作 A B(或 B A).如:A2 , 4,B3,5 ,7 ,则 A B.(3 )空集是任何集合的子集即 A(4 )空集是任何非空集合的真子集即 A 若 A,则 A(5 )任何一个集合是它本身的子集即 (6 )易混符号:“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系如 R,1 1,2,3,1,N0与 :0是含有一个元素 0 的集合, 是不含任何元素的集合如 0不能写成 =0,

5、0(7 )子集关系具有传递性.即 ,则 ,ABCA二、应用数学:例 1(1) 写出 N,Z,Q,R 的包含关系,并用文氏图表示(2 )判断下列写法是否正确: A A A A解(1):N Z Q R(2 ) 正确;错误,因为 A 可能是空集;正确;错误;【思考】1: 与 能否同时成立?AB【结论】如果 A B,同时 B A,那么 AB.如:a,b,c,d 与b,c ,d,a相等;2 ,3 ,4 与3,4,2相等;问:Axx2m1,mZ,Bx x2n1 ,nZ.(A=B )说明:稍微复杂的集合,特别是用描述法给出的,要从代表元素及其所满足的特性上认真分辨.【思考】2:若 A B,B C, 则 A

6、C?真子集关系也具有传递性若 A B,B C,则 A C.例 2 写出a 、b的所有子集,并指出其中哪些是它的真子集.【思路分析】寻求子集、真子集主要依据是定义.解:依定义:a ,b的所有子集是 、a、b、a ,b,其中真子集有 、a、b .【变式】写出集合1,2,3的所有子集解:、1、2 、3、1,2、1 ,3、2 ,3、1 ,2 ,3【猜想】(1)集合 a,b,c,d的所有子集的个数是多少?( )164(2 )集合 的所有子集的个数是多少? ( )na,21 n【推广】如果一个集合的元素有 n 个,那么这个集合的子集有 2n 个,真子集有 2n1 个,有2n-2 个非空真子集例 3 满足

7、个?aM,bcd、【思路分析】集合 M 中必含有元素 a, 故集合 M 的个数即是 的真子集的个数,bcd解:7 个例 4 已知集合 , ,且 ,求实数52|xA12|mxxBAB的取值范围m【思路分析】A 的子集要分 和 两种情况讨论解: , 即 ,依题意,有 ,在数轴上作出包含关系图形,B12mAB如图:有 解得 ;512m32m ,即 ,解得 ;B132综上所述,实数 的取值范围是 【解后反思】空集是任何集合的子集,注意空集的特殊性三、理解数学:1、用 连接下列集合对:“、”A=济南人,B=山东人;A=N,B=R;A=1,2,3,4,B=0,1,2,3,4,5;A=本校田径队队员,B=本

8、校长跑队队员;A=11 月份的公休日,B=11 月份的星期六或星期天2、若 A= , , ,则有几个子集,几个真子集?写出 A 所有的子集abc3、设 A=3 , Z,B=6 , Z,则 A、B 之间是什么关系?mk【课后提升】1 满足 的集合 是什么?A,dcbaA解析:由 可知, 集合 必为非空集合;又由 可知,此题即为求集合,dcba的所有非空子集。满足条件的集合 有,dcba, 共,dbc , cc ,dcba十五个非空子集此题可以利用有限集合的非空子集的个数的公式 进行检验, ,正确12n 1524答案:152 已知 ,试确定 A,B,C 之间的关0,1|,|,ABxACxN系解析:

9、由题意可得:A=0,1 , B= ,0,1,0,1 , C=1答案:A,B,C 之间的关系是 B,3 判断正误:(1) (2) = (3) 00(4) (5) (6) 解析: 表示以 为元素的单元素集合, 当把 视为集合时, 成立; 当把 视为元素时, 也成立. 表示元素, 表示以 为元素的单元素集合,不能00混淆它们的含意.答案: (1) ;(2) ;(3) ;(4) ;(5) ;(6) .4设集合 M=(x,y)|x+y0和 P=(x,y)|x0,y0,那么 M 与 P 的关系为_M = P5已知集合 , ,若 ,求实数 满足04|2xA0|2axBABa的条件解析:由于集合 可用列举法表

10、示为 ,所以 可能等于 ,即 ; 也可能,4,0是 的真子集,即 = ,或 = ,或 = ,从而求出实数 满足的条件。AB0B4a ,且 ,可得4,4|2xA当 时, ,由此可知, 是方程 的两根,AB,04,002ax由韦达定理 无解;)4(a当 时BA ,即 = , = , ,解得 ,0042a4,此时 , 符合题意,即 符合题意;2,B , ,解得 ,B04a4a综合知: 满足的条件是 答案: 06 已知集合 用列举法写出 ; ,|,AxBbaAB已知集合 用列举法写出 ,|,分析:集合本身也可以做另外集合的元素.解析: 由已知条件注意到 中的元素 的属性是 ,即 是 的子集, 可以是B

11、xAxx, = ,ba,ba由已知条件注意到 中的元素 的属性是 ,即 是 的元素, 可以是 ,BxAxxba = B,baA7 已知 aR,bR ,A=2,4 ,x 2-5x+9,B=3,x 2+ax+a,C=x 2+(a+1)x-3,1 ,求:(1)A=2,3,4的 x 值;(2)使 2B ,B A,求 a,x 的值;(3)使 B= C 的 a,x 的值解:(1)由题意知:x 2-5x+9=3,解得 x=2 或 x=3(2)2 B ,B A, 2359x即 x=2,a= 或 73,4a(3) B = C, 2(1)3x即 x=-1,a=-6 或 x=3,a=-2w.w.w.st.c.o.m高考试题$库

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报