1、相交线与平行线重点解析 1/如图,小明在操场上从 A 点出发,先沿南偏东 30方向走到 B 点,再沿南偏东 60方向走到 C 点.这时,ABC 的度数是( )A.120 B.135 C.150 D.160【解析】ABC=30+90+30=150.【答案】C【点评】本题考查角度的计算,理解方向角的含义是解题的突破口.易对方向角的概念理解不透而出现错误.2/如图 2,直线 lm,将含有 45角的三角形板 ABC 的直角顶点 C 放在直线 m 上,若125,则2 的度数为A20 B25 C30 D35【解析】易得12B45,所以2451452520【答案】A【点评】本题考查平行线的性质、三角形的外角
2、,过点 B 作辅助平行线,或延长 CB 与直线 l 相交,或延长 AB 与直线 m 相交,均可解决问题3/)如图,如果在阳光下你的身影的方向为北偏东 60方向,那么太阳相对于你的方向是( ) A南偏西 60 B南偏西 30 C北偏东 D北偏东 30 解析:根据投影的定义,身影的方向与太阳相对于自己的方向刚好相反解答:解:因为身影的方向为北偏东 60方向,太阳相对于自己的方向是南偏西 60 ,所以选项 A点评:本题主要考查投影与方位角的知识,准确理解投影的定义和方位角的表示方法是解题的关键4/如图,直线 ab,1=70,那么2 的度数是( )A50 B. 60 C.70 D. 80解析:因为 a
3、b,由平行线的性质,可得1=2=70。答案:C点评:本题考查了两直线平行,同位角相等的性质,是基础题,难度较小。5/如图,已知1=2,则图中互相平行的线段是 .解析: 因为1 与2 是直线 AD,BC 被 AC 所截形成的内错角,根据“内错角相等,两直线平行”的结论,得 ADBC.答案: ADBC(或 AD 与 BC 平行).点评:两直线平行的判定与性质也是中考常考内容,较简单.6/如图,ABCD,DBBC,1=40 0,则2 的度数是( )A.400 B. 500 C.600 D.1400 【解析】根据题意可得1 的邻补角是 1400,又 BDBC,所以2 的内错角是 1400-900=50
4、0,即2=50 0.【答案】B.【点评】此题考查了平行线的性质与邻补角的定义注意两直线平行,内错角相等7 如图,ABC 的三个顶点分别在直线 a、b 上,且 ab,若1=120,2=80,则3的度数是( )A.40 B.60 C.80 D.120解析:根据平行线性质求出ABC,根据三角形的外角性质得出3=1-ABC,代入即可得出答案CABOP(第 14 题)(N)E解答:解:ab,ABC=2=80,1=120,3=1-ABC,3=120-80=40,故选 A点评:本题考查了平行线性质和三角形的外角性质的应用,关键是求出ABC 的度数和得出3=1-ABC,题目比较典型,难度不大8 如图,量角器的直径与直角三角板 ABC 的斜边 AB 重合,其中量角器 0 刻度线的端点 N 与点 A 重合,射线 CP 从 CA 处出发沿顺时针方向以每秒 2 度的速度旋转, CP 与量角器的半圆弧交于点 E,第 35 秒时,点 E 在量角器上对应的读数是 度【解析】如图,连接 OE,ACB90,点 C 在以 AB 为直径的圆上,即点 C 在O 上,EOA2ECA,又ECA23570,AOE2ECA270140故答案为:140【答案】140【点评】本题主要考查了圆周角定理此题难度适中,解题的关键是证得点 C 在O 上,注意辅助线的作法、数形结合思想的应用