ImageVerifierCode 换一换
格式:PPT , 页数:24 ,大小:1.45MB ,
资源ID:3772225      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-3772225.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版八年级数学二次根式.ppt)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

北师大版八年级数学二次根式.ppt

1、2.7二次根式(1),1、什么叫做平方根?,知识回顾,一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。,2、什么叫算术平方根?,一般地,如果一个正数的平方等于a,那么这个正数叫做a的算术平方根。,,50米,a米,塔座所形成的这个直角三角形的 斜边长为_米。,塔座,?米,,如图示的值表示正方形的面积,则,正方形的边长是,b-3,a叫被开方数,,凭着你已有的知识, 说说对二次根式 的认识,好吗?,?,开动你的脑筋,你一定行!,,2. a可以是数,也可以是式.,3. 形式上含有二次根号,4. a0, 0,5.既可表示开方运算,也可表示运算的结果.,1.表示a的算术平方根,( 双重非负性),

2、在实数范围内,负数没有平方根,例1、下列各式是二次根式吗?,二次根式,根指数为2,被开方数是非负数,,例2 x取何值时,下列二次根式有意义?,求二次根式中字母的取值范围的基本依据是什么呢?,被开方数不小于零;,分母中有字母时,要保证分母不为零。,做一做:,填空:,(1), ,, ;, ,, ;, ,, ;, ,, ,6,6,20,20,有何发现:, ,,6.480, ;,(2)用计算器计算:, ,, ,6.480,0.9255,0.9255,有何发现:,观察上面的结果你可得出什么规律 ?,二次根式的性质,积的算术平方根等于它们算术平方根的积。,商的算术平方根等于它们算术平方根的商。,注意公式中

3、的条件,(1),(2),例3 化简:,(3),(1)被开方数中不含分母 (2)被开方数中不含能开得尽方的因数或因式;,最简二次根式的定义,如例3化简结果中的,带根号的数的化简要求:,化简时通常要求最终结果中分母不含根号,且各个二次根式都是最简二次根式。,例4 化简:,(1),(2),(3),解(1),一般步骤:,先将被开方数分解成平方因数与其他因数相乘的形式;,再根据积的算术平方根的性质写成 的形式;,最后把平方数开方,将结果化为最简二次根式。,你怎么发现被开方数含有开得尽方的因数?,是最简二次根式吗?,议一议:,将二次根式化成最简二次根式时,你的经验有什么?,梳理一下吧,(1)二次根式的概念(2)根号内字母的取值范围(3)二次根式值的非负性(4)二次根式值的化简,当堂训练,1、选择(1)若 是二次根式,则a、b应满足( )A、a、b均为非负数 B. 0 C、 a、b同号 D. a0,b0,(2)下列各式中,二次根式有( ) ; ; ; . A. 1个 B. 2个 C.3个 D. 4个,3、一个直角三角形的斜边长为15cm,一条直角边长为10cm, 求另一条直角边长。,B,A,21,3,设 ,化简下列二次根式。,解:,在化简时,一定要把被开方式中所有平方因式全部移到根号外,否则未完成化简。,选做题(2分钟),作业,习题2.9,总结:三类非负数,二次根式的性质(),

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报