ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:9.27MB ,
资源ID:290468      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-290468.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017届高三数学一轮复习第九篇平面解析几何第5节抛物线课件理.ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2017届高三数学一轮复习第九篇平面解析几何第5节抛物线课件理.ppt

1、第5节抛物线,知识链条完善,考点专项突破,解题规范夯实,知识链条完善 把散落的知识连起来,【教材导读】 1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?提示:当定点F在定直线l上时,动点的轨迹是过点F且与直线l垂直的直线.2.抛物线的标准方程中p的几何意义是什么?提示:p的几何意义是焦点到准线的距离.,知识梳理,1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离 的点的轨迹叫做抛物线.点F叫做抛物线的 ,直线l叫做抛物线的 .,相等,焦点,准线,2.抛物线的标准方程及其简单几何性质,(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2

2、p.,夯基自测,D,解析:依题意,点P到直线x=-2的距离等于它到点(2,0)的距离,故点P的轨迹是抛物线.,A,C,答案:x=-2,考点专项突破 在讲练中理解知识,考点一,抛物线的定义及其应用,反思归纳 利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系相互转化.,答案: (1)D,考点二,抛物线的标准方程及性质,答案: (1)B,答案: (2)C,反思归纳,(1)抛物线几何性质的确定由抛物线的方程可以确定抛物线的开口方向、焦点位置

3、、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.(2)求抛物线的标准方程的方法因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.因为未知数只有p,所以只需利用待定系数法确定p值即可.提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx或x2=my(m0).,直线与抛物线的位置关系,考点三,反思归纳,直线与抛物线位置关系的判断直线y=kx+m(m0)与抛物线y2=2px(p0)联立方程组,消去y,得到k2x2+2(mk-p)x+m2=0的形式.当k=0时,直线和抛物线相交,且与抛物线的对称轴平行,此时与抛物线只有一个交点;当k0时,设其

4、判别式为,(1)相交:0直线与抛物线有两个交点;(2)相切:=0直线与抛物线有一个交点;(3)相离:0直线与抛物线没有交点.提醒:过抛物线外一点总有三条直线和抛物线有且只有一个公共点;两条切线和一条平行于对称轴的直线.,反思归纳,直线与抛物线相交问题处理规律(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用根与系数的关系,避免求交点坐标的复杂运算.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图象结合几何性质做出解答.并注意“设而不求”“整体代入”“点差法

5、”的灵活应用.,备选例题,解析:由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2,即|AC|+|BD|取得最小值时当且仅当|AB|取得最小值.依抛物线定义知当|AB|为通径,即|AB|=2p=4时,为最小值,所以|AC|+|BD|的最小值为2.答案:2,(2)若B(3,2),求|PB|+|PF|的最小值.,(2)过点F且斜率为k的直线l与曲线E交于两点A,B,试判断在x轴上是否存在点C,使得|CA|2+|CB|2=|AB|2成立,请说明理由.,解题规范夯实 把典型问题的解决程序化,抛物线的综合问题,答题模板:第一步:分析已知条件,结合抛物线性质求得所需结论,得到所求结果;第二步:用参数表示题中的条件;第三步:将直线方程与抛物线方程联立,消元得一元二次方程,由根与系数关系,建立参数的关系;第四步:确定所求参数是否符合题意,得出结论.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报