ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:303.50KB ,
资源ID:2549576      下载积分:25 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-2549576.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高一数学讲义3-必修1第一章1.3函数的基本性质 .doc.doc)为本站会员(微传9988)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高一数学讲义3-必修1第一章1.3函数的基本性质 .doc.doc

1、1.3 函数的基本性质一、函数的单调性 课型 A例 1. 求证: 在区间 上递增。 证明略35yxx3,4例 2. 判断函数 在 上的单调性,并证明。 单调减 证明略xf1)(,0例 3. 求下列函数的单调区间: 单调减区间 单调增区间2yx,11, 单调减区间 单调增区间,02, 单调减区间 单调增区间2yx,(1,)和 ,(0,1)和 单调减区间 和 单调增区间 和2,0,例 4. 若 在 上递增,求 的取值范围。 ( )2()3fxax,2a4a例 5函数 的最大值为 ,最小值为 ,则 的值等于 ( D 24yMm)A B C D 10396二、函数的奇偶性 课型 A例 1. 判断下列函

2、数的奇偶性:; 非奇非偶函数 1 12)(xf; 奇函数非偶函数 2 f3( ) 当 时,既是奇函数又是偶函数 3 ax)(R0a当 时, 是偶函数非奇函数奇函数非偶函数 4 )1()xf .0,例 2已知函数 ,那么 等于 ( A )538(2)=10fabf且(2)fA B C D 6110例 3已知函数 是偶函数,那么是 是( A )2()fxabc32()gxabcxA.奇函数 B. 偶函数 C. 既奇又偶函数 D. 非奇非偶函数例 4. 已知 为奇函数 2()(1)xaf xb 求 的值 (0,0),ab 判断 的单调性并证明。()fx解:(1) 为奇函数 (0)f(0),1af又

3、1(),2f bb(2) 在 上单调增。证明略()fx,三、函数性质的应用 课型 B例 1已知函数 (1)若 ,则 的定义域是 3()(1).axfa()fx。 3,a(2)若 在区间 上是减函数,则实数 a 的取值范围是 。.()fx0,1,01,3例 2已知函数 0,4)(2xxf若 2()(,faf则实数 a的取值范围是( C )A (,1)(2,) B (1,2) C (,1) D (,2)(1,)例 3偶函数 的定义域为 R,在(0, +) 上是减函数,则下列不等式中成立的是 ( fxB )A . B . 2()(1)4ffa23()(1)4ffaC . D. 3例 4. 定义在 上

4、的奇函数 在整个定义域上是减函数,)1,()(xf若 ,求实数 的取值范围。 ( )02aff a01a解:由已知条件得:2(1)()1ff21a02a01a例 5. 定义在 上的函数 满足对任意的实数 总有 ,R()fx,xy()()fyfxy若 时0x,12f 求证 为奇函数()f 求证 在定义域上递增x 当 时,求 的最大值和最小值。 (6,-6)3()fx证明:令 0,()0(),0xyfff令 x()fxf 为奇函数 对于任意的 1212,xRx且 12()()()0fffffx 在定义域上递增。12xx 在定义域上递增()f max3fmin()3fxf(0),(1)22436fff()

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报