ImageVerifierCode 换一换
格式:DOC , 页数:38 ,大小:71.34KB ,
资源ID:1547051      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1547051.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(带时滞弹性机器人模型的控制问题.doc)为本站会员(cjc2202537)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

带时滞弹性机器人模型的控制问题.doc

1、运筹学与控制论专业毕业论文 精品论文 带时滞弹性机器人模型的控制问题关键词:机器人模型 时滞方程 C0 半群 谱分析 schauder 基摘要:机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,

2、重点探讨其解的结构。本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当

3、的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。正文内容机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系

4、统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对

5、系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的

6、发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert

7、 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象

8、进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类

9、带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作

10、了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主

11、要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函

12、数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学

13、科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空

14、间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机

15、器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。

16、在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。

17、 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果

18、。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定

19、性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器

20、人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求

21、,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。

22、本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止

23、,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照

24、本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力系统模型等等。机器人学作为一门新兴学科,已有近四十年的发展历史了。近十多年来,弹性机器人的运行学、动力学、运动规划和控制问题越来越受到人们的关注。 对于弹性机器人控制问题的研究,许多专家和学者在这方面已经做

25、出了很多很好的结果。然而,那些结果主要还是集中在对系统的定性研究上,对系统的定量研究则涉及的比较少。在人们实际生活和工程应用中,更多的需要得到系统的定量结果。而如何得到解的有效近似值,就作者所知,到目前为止,还没有成熟结果。在本文中,针对一类带时滞弹性机器人模型,重点探讨其解的结构。 本文研究的是一自由度,状态可以控制的带时滞弹性机器人模型,其中机器人的动力学行为是由带时滞的微分方程描述。首先,根据系统的要求,选取合适的状态空间-Hilbert 状态空间,运用发展方程理论知识,将一个带时滞的微分方程,等价地转化成一个发展方程;然后,利用半群理论知识和泛函分析方法,对抽象发展方程的适定性进行了研

26、究.有了系统的适定性,我们运用复变函数和谱理论知识,对系统算子的谱作了细致的分析,进而得到谱的渐近表达式和本征向量。最后,在上述研究基础之上,证明了系统本征函数的非基性质.但是,我们仍然可以得到方程的解按照本征向量的展开式。 在对所研究系统作了理论分析之后,选择适当的参数,对选定的系统进行了模拟仿真。通过对系统的仿真说明,这样得到的解不仅是绝对收敛的,而且在满足 tgt;4T 时,可以得到系统有效的近似解。 本文是以一类时滞机器人模型为研究对象进行研究的,由于我们采用的方法具有一般性,因此这样的方法可以推广应用到其他时滞动力系统模型研究当中,诸如一些生物学模型、经济学模型、以及化学工业上的动力

27、系统模型等等。特别提醒 :正文内容由 PDF 文件转码生成,如您电脑未有相应转换码,则无法显示正文内容,请您下载相应软件,下载地址为 http:/ 。如还不能显示,可以联系我 q q 1627550258 ,提供原格式文档。“垐垯櫃 换烫梯葺铑?endstreamendobj2x 滌?U 閩 AZ箾 FTP 鈦X 飼?狛P? 燚?琯嫼 b?袍*甒?颙嫯?4)=r 宵?i?j 彺帖 B3 锝檡骹笪 yLrQ#?0 鯖 l 壛枒l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛枒 l 壛渓?擗#?“?# 綫 G 刿#K 芿$?7. 耟?Wa 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 皗 E|?pDb 癳$Fb 癳$Fb癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$Fb 癳$F?責鯻 0 橔 C,f 薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵薍秾腵秾腵薍秾腵%?秾腵薍秾腵薍秾腵薍秾腵薍

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报