ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:1.06MB ,
资源ID:1443620      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1443620.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019版高考数学大一轮复习 第八章 立体几何初步 第5课时 直线、平面垂直的判定及其性质课件 北师大版.ppt)为本站会员(天天快乐)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2019版高考数学大一轮复习 第八章 立体几何初步 第5课时 直线、平面垂直的判定及其性质课件 北师大版.ppt

1、第5节直线、平面垂直的判定及其性质,01,02,03,04,考点三,考点一,考点二,例1 训练1,线面垂直的判定与性质,面面垂直的判定与性质,平行与垂直的综合问题(多维探究),诊断自测,例2-1 训练2,例3-1 例3-2 例3-3 训练3,证明(1)在四棱锥P - ABCD中,PA底面ABCD,CD平面ABCD,PACD,又ACCD,且PAACA,CD平面PAC.而AE平面PAC,CDAE.,证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性;(3)面面平行的性质;(4)面面垂直的性质,证明 (2)由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.由(

2、1)知AECD,且PCCDC,AE平面PCD.而PD平面PCD,AEPD.PA底面ABCD,AB平面ABCD,PAAB.又ABAD,且PAADA,AB平面PAD,而PD平面PAD,ABPD.又ABAEA,PD平面ABE.,证明直线和平面垂直的常用方法有:(1)判定定理;(2)垂直于平面的传递性;(3)面面平行的性质;(4)面面垂直的性质,考点一线面垂直的判定与性质,证明因为AB为圆O的直径,所以ACCB.,由余弦定理得CD2DB2BC22DBBCcos 303,所以CD2DB2BC2,即CDAB.因为PD平面ABC,CD平面ABC,所以PDCD,由PDABD得,CD平面PAB,又PA平面PAB

3、,所以PACD.,证明(1)平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,PA平面PAD,PA底面ABCD.(2)ABCD,CD2AB,E为CD的中点,ABDE,且ABDE.四边形ABED为平行四边形BEAD.又BE平面PAD,AD平面PAD,BE平面PAD.,已知两平面垂直时,一般要用性质定理进行转化,证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定理,证明(3)ABAD,而且ABED为平行四边形BECD,ADCD,由(1)知PA底面ABCD,CD平面ABCD,PACD,且PAADA,PA,AD平面PAD,CD平面PAD,又PD平面PAD,CDPD.E和F分

4、别是CD和PC的中点,PDEF.CDEF,又BECD且EFBEE,CD平面BEF,又CD平面PCD,平面BEF平面PCD.,已知两平面垂直时,一般要用性质定理进行转化,证明平面和平面垂直的方法:(1)面面垂直的定义;(2)面面垂直的判定定理,考点二面面垂直的判定与性质,(1)证明PAAB,PABC,AB平面ABC,BC平面ABC,且ABBCB,PA平面ABC,又BD平面ABC,PABD.(2)证明ABBC,D是AC的中点,BDAC.由(1)知PA平面ABC,PA平面PAC,平面PAC平面ABC.平面PAC平面ABCAC,BD平面ABC,BDAC,BD平面PAC.BD平面BDE,平面BDE平面P

5、AC,,(3)解PA平面BDE,又平面BDE平面PACDE,PA平面PAC,PADE.由(1)知PA平面ABC,DE平面ABC.D是AC的中点,E为PC的中点,,证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD - A1B1C1D1是四棱柱,所以A1O1OC,A1O1OC,因此四边形A1OCO1为平行四边形,所以A1OO1C,又O1C平面B1CD1,A1O平面B1CD1,所以A1O平面B1CD1.,应注意平行、垂直的性质及判定的综合应用,O1,证明(2)因为ACBD,E,M分别为AD和OD的中点,所以EMBD,又A1E平面ABCD,BD平面ABCD,所以A1EBD,因为B1D

6、1BD,所以EMB1D1,A1EB1D1,又A1E,EM平面A1EM,A1EEME,所以B1D1平面A1EM,又B1D1平面B1CD1,所以平面A1EM平面B1CD1.,应注意平行、垂直的性质及判定的综合应用,O1,考点三平行与垂直的综合问题(多维探究),(1)证明连接AC交BD于O,连接OF,如图.四边形ABCD是矩形,O为AC的中点,又F为EC的中点,OF为ACE的中位线,OFAE,又OF平面BDF,AE平面BDF,AE平面BDF.,利用线面平行的判定定理,(2)解当P为AE中点时,有PMBE,证明如下:取BE中点H,连接DP,PH,CH,P为AE的中点,H为BE的中点,PHAB,又ABC

7、D,PHCD,P,H,C,D四点共面,先通过命题成立的必要条件探索出命题成立的条件,再证明充分性,P,平面ABCD平面BCE,平面ABCD平面BCEBC,CD平面ABCD,CDBC.CD平面BCE,又BE平面BCE,CDBE,BCCE,H为BE的中点,CHBE,又CDCHC,BE平面DPHC,又PM平面DPHC,BEPM,即PMBE.,P,考点三平行与垂直的综合问题(多维探究),(1)解如图,由已知ADBC,故DAP或其补角即为异面直线AP与BC所成的角.因为AD平面PDC,PD平面PDC,所以ADPD.,(2)证明由(1)知ADPD,又因为BCAD,所以PDBC.又PDPB,BCPBB,所以

8、PD平面PBC.(3)解过点D作DFAB,交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因PD平面PBC,故PF为DF在平面PBC上的射影,所以DFP为直线DF和平面PBC所成的角.由于ADBC,DFAB,故BFAD1.由已知,得CFBCBF2.,(2)证明由(1)知ADPD,又因为BCAD,所以PDBC.又PDPB,BCPBB,所以PD平面PBC.(3)解过点D作DFAB,交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因PD平面PBC,故PF为DF在平面PBC上的射影,所以DFP为直线DF和平面PBC所成的角.由于ADBC,

9、DFAB,故BFAD1.,F,由已知,得CFBCBF2.又ADDC,故BCDC.,F,考点三平行与垂直的综合问题(多维探究),(1)证明因为PDPC且点E为CD的中点,所以PEDC.又平面PDC平面ABCD,且平面PDC平面ABCDCD,PE平面PDC,所以PE平面ABCD,又FG平面ABCD,所以PEFG.,(2)解由(1)知PE平面ABCD,PEAD,又ADCD,PECDE,AD平面PDC,ADPD,PDC为二面角PADC的平面角,在RtPDE中,PD4,DE3,,(3)解如图,连接AC,AF2FB,CG2GB,ACFG.直线PA与FG所成角即直线PA与AC所成角PAC.在RtPDA中,PA2AD2PD225,PA5.又PC4. AC2CD2AD236945,,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报