ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:263.50KB ,
资源ID:1439905      下载积分:13 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1439905.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(函数值域求法十一种.doc)为本站会员(eco)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

函数值域求法十一种.doc

1、函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 1. 求函数 的值域。解:显然函数的值域是:例 2. 求函数 的值域。解:故函数的值域是:2. 配

2、方法配方法是求二次函数值域最基本的方法之一。例 3. 求函数 的值域。解:将函数配方得:由二次函数的性质可知:当 x=1 时, ,当 时,故函数的值域是:4,83. 判别式法例 4. 求函数 的值域。解:原函数化为关于 x 的一元二次方程(1)当 时,解得:(2)当 y=1 时, ,而故函数的值域为例 5. 求函数 的值域。解:两边平方整理得: (1)解得:但此时的函数的定义域由 ,得由 ,仅保证关于 x 的方程: 在实数集 R 有实根,而不能确保其实根在区间0 ,2 上,即不能确保方程(1)有实根,由 求出的范围可能比 y 的实际范围大,故不能确定此函数的值域为 。可以采取如下方法进一步确定

3、原函数的值域。代入方程(1)解得:即当 时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 6. 求函数 值域。解:由原函数式可得:则其反函数为: ,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。例 7. 求函数 的值域。解:由原函数式可得:解得:故所求函数的值域为例 8. 求函数 的值域。解:由原函数式可得: ,可化为:即即解得:故函数的值域为6. 函数单

4、调性法例 9. 求函数 的值域。解:令则 在2,10上都是增函数所以 在2,10上是增函数当 x=2 时,当 x=10 时,故所求函数的值域为:例 10. 求函数 的值域。解:原函数可化为:令 ,显然 在 上为无上界的增函数所以 , 在 上也为无上界的增函数所以当 x=1 时, 有最小值 ,原函数有最大值显然 ,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 11. 求函数 的值域。解:令 ,则又 ,由二次函数的性质可知当 时,当 时,故函数的值域为例 1

5、2. 求函数 的值域。解:因即故可令故所求函数的值域为例 13. 求函数 的值域。解:原函数可变形为:可令 ,则有当 时,当 时,而此时 有意义。故所求函数的值域为例 14. 求函数 , 的值域。解:令 ,则由且可得:当 时, ,当 时,故所求函数的值域为 。例 15. 求函数 的值域。解:由 ,可得故可令当 时,当 时,故所求函数的值域为:8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例 16. 求函数 的值域。解:原函数可化简得:上式可以看成数轴上点 P(x)到定点 A(2), 间的距离

6、之和。由上图可知,当点 P 在线段 AB 上时,当点 P 在线段 AB 的延长线或反向延长线上时,故所求函数的值域为:例 17. 求函数 的值域。解:原函数可变形为:上式可看成 x 轴上的点 到两定点 的距离之和,由图可知当点 P 为线段与 x 轴的交点时, ,故所求函数的值域为例 18. 求函数 的值域。解:将函数变形为:上式可看成定点 A(3 ,2)到点 P(x ,0)的距离与定点 到点 的距离之差。即:由图可知:(1 )当点 P 在 x 轴上且不是直线 AB 与 x 轴的交点时,如点 ,则构成 ,根据三角形两边之差小于第三边,有即:(2)当点 P 恰好为直线 AB 与 x 轴的交点时,有

7、综上所述,可知函数的值域为:注:由例 17,18 可知,求两距离之和时,要将函数式变形,使 A、B 两点在 x 轴的两侧,而求两距离之差时,则要使 A,B 两点在 x 轴的同侧。如:例 17 的 A,B 两点坐标分别为:(3,2 ), ,在 x 轴的同侧;例 18 的 A,B 两点坐标分别为(3 ,2 ), ,在 x 轴的同侧。9. 不等式法利用基本不等式 ,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。例 19. 求函数 的值域。解:原函数变形为:当且仅当即当 时 ,等号成立故原函数的值域为:例 20. 求函数 的值域。解:当且仅当 ,即当 时,等号成立。由 可得:故原函数的值域为:10. 一一映射法原理:因为 在定义域上 x 与 y 是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。例 21. 求函数 的值域。解:定义域为由 得故 或解得故函数的值域为11. 多种方法综合运用例 22. 求函数 的值域。解:令 ,则(1)当 时, ,当且仅当 t=1,即 时取等号,所以(2)当 t=0 时,y=0。综上所述,函数的值域为:注:先换元,后用不等式法例 23. 求函数 的值域。解:令 ,则

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报