ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:619KB ,
资源ID:1439515      下载积分:13 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1439515.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(二项式定理—十一种考题的解法.doc)为本站会员(eco)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

二项式定理—十一种考题的解法.doc

1、二项式定理1二项式定理:,01() ()nnrnnabCabCabN 2基本概念:二项式展开式:右边的多项式叫做 的二项展开式。()n二项式系数:展开式中各项的系数 .rn0,12,)项数:共 项,是关于 与 的齐次多项式(1)rab通项:展开式中的第 项 叫做二项式展开式的通项。用 表示。rnrC 1rnrTCab3注意关键点:项数:展开式中总共有 项。(1)顺序:注意正确选择 , ,其顺序不能更改。 与 是不同的。ab()nab()na指数: 的指数从 逐项减到 ,是降幂排列。 的指数从 逐项减到 ,是升幂排列。各项的n00次数和等于 .系数:注意正确区分二项式系数与项的系数,二项式系数依

2、次是 项的12,.rnnCC系数是 与 的系数(包括二项式系数) 。ab4常用的结论:令 1,x012() ()n rnnnCxxN 令 ,ab 1)rnCx 5性质:二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 ,0nC1knC二项式系数和:令 ,则二项式系数的和为 ,ab0122rnnnnC 变形式 。12rnnC 奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令 ,则 ,,ab0123(1)()0nnnnC从而得到: 0242 12r rnn 奇数项的系数和与偶数项的系数和:012012100123(), (1)nnnnn nnnnaxCaxCaxaxa

3、x 令 则 令 则 024135, ()2(1), nnnaa 得 奇 数 项 的 系 数 和 得 偶 数 项 的 系 数 和二项式系数的最大项:如果二项式的幂指数 是偶数时,则中间一项的二项式系数 取得最大2nC值。如果二项式的幂指数 是奇数时,则中间两项的二项式系数 , 同时n 12n取得最大值。系数的最大项:求 展开式中最大的项,一般采用待定系数法。设展开式中各项系数分()nabx别为 ,设第 项系数最大,应有 ,从而解出 来。121,nAr12rrAr6二项式定理的十一种考题的解法:题型一:二项式定理的逆用;例: 1232166 .nnnCC解: 与已知的有一些差距,0123() 6n

4、nnC1232112(6)nn n 01 1(6)(76nnnC练: 12319 .nn C解:设 ,则3nnS12 012333 1(3)nnn nnnCCC ()41nnnS题型二:利用通项公式求 的系数;nx例:在二项式 的展开式中倒数第 项的系数为 ,求含有 的项的系数?3241()nx3453x解:由条件知 ,即 , ,解得 ,由25nC24n290n9()10nn舍 去 或,由题意 ,10103341()rrrrTxx 123,64rr解 得则含有 的项是第 项 ,系数为 。376102TC0练:求 展开式中 的系数?29()x9x解: ,令 ,则182 1831999()()()

5、22rrrrrrrrTCxx9r3故 的系数为 。x39题型三:利用通项公式求常数项;例:求二项式 的展开式中的常数项?210()x解: ,令 ,得 ,所以5202101 1()()rrrrrTCCx02r88910456练:求二项式 的展开式中的常数项?(2)x解: ,令 ,得 ,所以6 662111()()rrrrrrrTCCxx0r3346()0练:若 的二项展开式中第 项为常数项,则2nx5_.n解: ,令 ,得 .44215()nnTCx206题型四:利用通项公式,再讨论而确定有理数项;例:求二项式 展开式中的有理项?93()x解: ,令 ,( )得 ,127193621 9()rr

6、rrrrTCCxrZ09r39r或所以当 时, , ,7463449(1)8Tx当 时, , 。9r23r10x题型五:奇数项的二项式系数和=偶数项的二项式系数和;例:若 展开式中偶数项系数和为 ,求 .231()nx256n解:设 展开式中各项系数依次设为23()nx01,na,则有 , ,则有 1令 010,nax令 0123(1)2,naa将-得: 352()2n135,na有题意得, , 。186n9练:若 的展开式中,所有的奇数项的系数和为 ,求它的中间项。352()nx 1024解: , ,解得042132r rnnnnnCC 1024n1所以中间两个项分别为 , ,6,75654

7、3121()nTxx 61561Tx题型六:最大系数,最大项;例:已知 ,若展开式中第 项,第 项与第 项的二项式系数成等差数列,求展开式中1(2)nx57二项式系数最大项的系数是多少?解: 解出 ,当 时,展开式中二项式系4652,1980,nnC14n或 7n数最大的项是 , 当45T和 34475()2,C的 系 数 431()20,TC的 系 数时,展开式中二项式系数最大的项是 , 。18714的 系 数练:在 的展开式中,二项式系数最大的项是多少?2()nab解:二项式的幂指数是偶数 ,则中间一项的二项式系数最大,即 ,也就是第 项。n21nT1n练:在 的展开式中,只有第 项的二项

8、式最大,则展开式中的常数项是多少?31()2nx5解:只有第 项的二项式最大,则 ,即 ,所以展开式中常数项为第七项等于512n8n6281()7C例:写出在 的展开式中,系数最大的项?系数最小的项?ab解:因为二项式的幂指数 是奇数,所以中间两项( )的二项式系数相等,且同时取得最大74,5第 项值,从而有 的系数最小, 系数最大。344TCab357TCab例:若展开式前三项的二项式系数和等于 ,求 的展开式中系数最大的项?91(2)nx解:由 解出 ,假设 项最大,01279,nn121r 1212()(4)x,化简得到 ,又 ,112124rrrrAC9.40.rr,展开式中系数最大的

9、项为 ,有01T12110()689Cx练:在 的展开式中系数最大的项是多少?1(2)x解:假设 项最大,1rT102rrrCx,化简得到 ,又1121002(1)0,rrrrAr 解 得 6.37.k, ,展开式中系数最大的项为07778150.TCx题型七:含有三项变两项;例:求当 的展开式中 的一次项的系数?25(3)xx解法: , ,当且仅当 时, 的25()32515()(3rrrTx1r1rT展开式中才有 x的一次项,此时 ,所以 得一次项为142rCx14523C它的系数为 。14520解法: 250514501455()()()(2)xxCxCxC故展开式中含 的项为 ,故展开

10、式中 的系数为 240.44552练:求式子 的常数项?31(2)x解: ,设第 项为常数项,则36()()x1r,得 , , .662161()()r rrrTCC 0r3316()20TC题型八:两个二项式相乘;例: 342(12)xx求 展 开 式 中 的 系 数 .解: 33()2,mmx的 展 开 式 的 通 项 是 C444() 10,123,4,nnnxxn的 展 开 式 的 通 项 是 其 中2,02,()mn x令 则 且 且 且 因 此.021120343434()2(1)6xCCC的 展 开 式 中 的 系 数 等 于练: 61034(1)()求 展 开 式 中 的 常

11、数 项 .解:436103 3412610604()()mnmnxCxCx展 开 式 的 通 项 为 ,6,2,2, ,48mnnn 其 中 当 且 仅 当 即 或 或.03468616101024CC时 得 展 开 式 中 的 常 数 项 为练: 2 *3(1)( ,8,_.nx N 已 知 的 展 开 式 中 没 有 常 数 项 且 则解: 343nrnrnrxx展 开 式 的 通 项 为 通 项 分 别 与 前 面 的 三 项 相 乘 可 得44142C,C, ,2rrrrnnnx n展 开 式 中 不 含 常 数 项,83765.n且 且 , 即 且 且题型九:奇数项的系数和与偶数项的

12、系数和;例: 206(), ,2,_.xxSxS在 的 二 项 展 开 式 中 含 的 奇 次 幂 的 项 之 和 为 当 时解: 1232060axax设 =-26123206()xx -35520620620( )()()xxx 得 206 1() x S展 开 式 的 奇 次 幂 项 之 和 为 32062062063081,()()()S 当 时题型十:赋值法;例:设二项式 的展开式的各项系数的和为 ,所有二项式系数的和为 ,若31()nxps,则 等于多少?27ps解:若 ,有 ,2301()n nxaxax01nPa,0nnSC令 得 ,又 ,即 解得1x4P27ps427()26

13、0nnn, .26()nn或 舍 去 练:若 x3的展开式中各项系数之和为 ,则展开式的常数项为多少?64解:令 ,则n1的展开式中各项系数之和为 ,所以 6n,则展开式的常1 264n数项为 336()Cx.540例: 209123209 209121 (),aaaxaxR若 则 的 值 为解: 0920910 0222, ,ax令 可 得091, .在 令 可 得 因 而练: 54321012345(2) , _.xaxaxaa若 则解: 0012345, ,令 得 令 得12345.题型十一:整除性;例:证明: 能被 64整除2*89()nN证: 113(89nn0112118nnnnCC1118()nnn 01128nnnCC由于各项均能被 64整除 2*38964N能 被 整 除

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报