ImageVerifierCode 换一换
格式:PPT , 页数:18 ,大小:526.86KB ,
资源ID:1351016      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1351016.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学人教b版选修2-2课件:2.3 数学归纳法.ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高中数学人教b版选修2-2课件:2.3 数学归纳法.ppt

1、2.3数学归纳法,1.了解数学归纳法的原理,能用数学归纳法证明一些简单命题.2.理解数学归纳法两个步骤的作用,进一步规范书写的语言结构.,数学归纳法一个与自然数相关的命题,如果(1)当n取第一个值n0时命题成立;(2)在假设当n=k(kN+,且kn0)时命题成立的前提下,推出当n=k+1时命题也成立,那么可以断定,这个命题对n取第一个值后面的所有正整数成立.,名师点拨数学归纳法是专门证明与自然数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题时应注

2、意以下几点:(1)两个步骤缺一不可;(2)在第一步中,n的初始值不一定从1取起,也不一定只取一个数(有时需取n=n0,n0+1等),证明应视具体情况而定;,(3)在第二步中,证明n=k+1时命题成立,必须使用归纳假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效;(4)证明n=k+1时命题成立,要明确求证的目标形式,一般要凑出归纳假设里给出的形式,以便使用归纳假设,然后再去凑出当n=k+1时的结论,这样就能有效减少论证的盲目性.,解析:因为从n=k到n=k+1的证明过程中没有用到归纳假设,所以从n=k到n=k+1的推理不正确.答案:D,1.利用数学归纳法证明问题时有哪些注意事项?剖

3、析:(1)用数学归纳法证明有关命题的关键在第二步,即n=k+1时命题为什么成立.n=k+1时命题成立是利用假设n=k时命题成立,根据有关的定理、定义、公式、性质等数学结论推证出来的,而不是直接代入,否则n=k+1时命题成立也成假设了,命题并没有得到证明.(2)用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都能用数学归纳法证明,学习时要具体问题具体分析.,2.运用数学归纳法时易犯的错误有哪些?剖析:(1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错.(2)没有利用归纳假设:归纳假设是必须要用的.假设是起桥梁作用的,桥梁断了就通不过去了.(3)关键步

4、骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题中最重要的环节,要把推导的过程和步骤写完整,注意证明过程的严谨性、规范性.,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,反思理解等式的特点:在等式左边,当n取一个值时,对应两项,即 1 21 1 2 ;在等式右边,当n取一个值时,对应一项.无论n取何值,应保证等式左边有2n项,而等式右边有n项,然后再按数学归纳法的步骤要求给出证明.,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,反思应用数学归纳法证明不等式时,往往通过拼凑项或拆项用上归纳假设,再应用放缩法或其他证明不等式的方法证得n=k+1时命题成立.,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,反思先计算出一个数列的前几项,用不完全归纳法猜想得到通项公式,再用数学归纳法给予证明,这是解数列问题的常见思路.,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报