ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:1.39MB ,
资源ID:1348723      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1348723.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(测控指导高中数学(福建)人教a版选修4-5课件:4.2 用数学归纳法证明不等式举例.ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

测控指导高中数学(福建)人教a版选修4-5课件:4.2 用数学归纳法证明不等式举例.ppt

1、二用数学归纳法证明不等式举例,1.通过教材掌握几个有关正整数n的结论.2.会用数学归纳法证明不等式.,1.观察、归纳、猜想、证明的方法剖析:这种方法解决的问题主要是归纳型问题或探索型问题,命题的成立不成立都预先需要归纳与探索,而归纳与探索多数情况下是从特例、特殊情况入手,得到一个结论,但这个结论不一定正确,因为这是靠不完全归纳法得出的,因此,需要给出一定的逻辑证明,所以,通过观察、分析、归纳、猜想,探索一般规律,其关键在于正确的归纳猜想,如果归纳不出正确的结论,那么数学归纳法的证明也就无法进行了.在观察与归纳时,n的取值不能太少,否则将得出错误的结论.前几项的关系可能只是特殊情况,不具有一般性

2、,因而,要从多个特殊事例上探索一般结论.,2.从“n=k”到“n=k+1”的方法与技巧剖析:在用数学归纳法证明不等式问题中,从“n=k”到“n=k+1”的过渡,利用归纳假设是比较困难的一步,它不像用数学归纳法证明恒等式问题一样,只需拼凑出所需要的结构来,而证明不等式的第二步中,从“n=k”到“n=k+1”,只用拼凑的方法,有时也行不通,因为对不等式来说,它还涉及“放缩”的问题,它可能需要通过“放大”或“缩小”的过程,才能利用上归纳假设,因此,我们可以利用“比较法”“综合法”“分析法”等来分析从“n=k”到“n=k+1”的变化,从中找到“放缩尺度”,准确地拼凑出所需要的结构.,题型一,题型二,题

3、型三,题型四,分析:先通过n取比较小的值进行归纳猜想,确定证明方向,再用数学归纳法证明.,题型一,题型二,题型三,题型四,当n=1时,21=212=1,当n=2时,22=4=22,当n=3时,23=852=25,当n=6时,26=6462=36.故猜测当n5(nN+)时,2nn2,题型一,题型二,题型三,题型四,下面用数学归纳法加以证明.(1)当n=5时,2nn2显然成立.(2)假设当n=k(k5,且kN+)时,不等式2nn2成立,即2kk2(k5),则当n=k+1时,2k+1=22k2k2=k2+k2+2k+1-2k-1=(k+1)2+(k-1)2-2(k+1)2(因为(k-1)22).由(

4、1)(2)可知,对一切n5,nN+,2nn2成立.综上所述,题型一,题型二,题型三,题型四,反思利用数学归纳法比较大小,关键是先用不完全归纳法归纳出两个量的大小关系,猜测出证明的方向.再用数学归纳法证明结论成立.,题型一,题型二,题型三,题型四,(1)求函数h(x)=f(x)-g(x)的零点个数,并说明理由;(2)设数列an(nN+)满足a1=a(a0),f(an+1)=g(an),证明:存在常数M,使得对于任意的nN+,都有anM.,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,(1)求数列an的通项公式;(2

5、)求证:对一切正整数n,不等式a1a2anQn.若x=0,则Pn=Qn.若x(-1,0),则P3-Q3=x30,所以P3Q3.,题型一,题型二,题型三,题型四,P4-Q4=4x3+x4=x3(4+x)0,所以P4Q4.假设当n=k(k3,kN+)时,有PkQk(k3),则当n=k+1时,Pk+1=(1+x)Pk(1+x)Qk=Qk+xQk即当n=k+1时,不等式成立.所以当n3,且x(-1,0)时,PnQn.反思本题中,n的取值会影响Pn与Qn的大小变化,变量x也影响Pn与Qn的大小关系,这就要求我们在探索大小关系时,不能只顾“n”,而忽视其他变量(参数)的作用.,题型一,题型二,题型三,题型四,题型一,题型二,题型三,题型四,所以当n=k+1时,不等式也成立.由(1)(2)可知,原不等式对一切n2,nN+均成立.,题型一,题型二,题型三,题型四,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报