ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:618KB ,
资源ID:1344714      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1344714.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学:2.3《数学归纳法》ppt课件(新人教a版-选修2-2).ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学:2.3《数学归纳法》ppt课件(新人教a版-选修2-2).ppt

1、新课标人教版课件系列,高中数学选修2-2,2.3数学归纳法,教学目标,了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。 教学重点:了解数学归纳法的原理,第一课时,一、归纳法对于某类事物,由它的一些特殊事例或其全部可能情况,归纳出一般结论的推理方法,叫归纳法。,特点:,an=a1+(n-1)d,如何证明:1+3+5+(2n-1)=n2 (nN*),二、数学归纳法的概念,证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性:(1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(kN* ,kn0 )时命题成立, 证明当n=k+1时命题也成立,完成这两步,就可

2、以断定这个命题对从n0开始的所有正整数n都成立。这种证明方法叫做数学归纳法。,求证,请问:第步中“当n=k+1时”的证明可否改换为:1+3+5+(2k-1)+2(k+1)-1= 1+3+5+(2k-1)+(2k+1)= = (k+1)2 ?为什么?,例:用数学归纳法证明,例、求证:(n+1)(n+2)(n+n)=2n 1 3 (2n-1),作业:P108 A组 1(2) B组 3,第二课时,证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性:(1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(kN* ,kn0 )时命题成立, 证明当n=k+1时命题也成立,完成

3、这两步,就可以断定这个命题对从n0开始的所有正整数n都成立。这种证明方法叫做数学归纳法。,回顾,例:已知数列 计算 ,根据计算的结果,猜想 的表达式,并用数学归纳法进行证明.,例:是否存在常数a、b,使得等式: 对一切正整数n都成立,并证明你的结论.,点拨:对这种类型的题目,一般先利用n的特殊值,探求出待定系数,然后用数学归纳法证明它对一切正整数n都成立.,解:令n=1,2,并整理得,以下用数学归纳法证明:,(2)假设当n=k时结论正确,即:,则当n=k+1时,故当n=k+1时,结论也正确.,根据(1)、(2)知,对一切正整数n,结论正确.,(1)当n=1时,由上面解法知结论正确.,例:比较

4、2n 与 n2 (nN*)的大小,注:先猜想,再证明,解:当n=1时,2n=2,n2=1, 2nn2 当n=2时,2n=4,n2=4, 2n=n2 当n=3时,2n=8,n2=9, 2nn2 当n=6时,2n=64,n2=36, 2nn2猜想当n5时,2nn2(证明略),例:平面内有n条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)=n(n-1)/2.,说明:用数学归纳法证明几何问题,重难点是处理好当n=k+1时利用假设结合几何知识证明命题成立.,注:在上例的题设条件下还可以有如下二个结论:,(1)设这n条直线互相分割成f(n)条线段或射线,-则: f(n)=n2.,(2)这n条直线把平面分成(n2+n+2)/2个区域.,:平面内有n条直线,其中任何两条不平行,任何三条不过同一点,证明这n条直线把平面分成f(n)(n2+n+2)/2个区域.,作业:组,1:n边形有f(n)条对角线,则凸n+1边形的对角线 -的条数f(n+1)=f(n)+_.,2:设有通过一点的k个平面,其中任何三个平面或 三个以上的平面不共有一条直线,这k个平面将 空间分成f(k)个区域,则k+1个平面将空间分成 f(k+1)=f(k)+_个区域.,思考题,再见,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报