ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:382KB ,
资源ID:1344088      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-1344088.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《不等关系与不等式》课件6(新人教a版必修5).ppt)为本站会员(无敌)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

《不等关系与不等式》课件6(新人教a版必修5).ppt

1、不等式的应用,学习内容一、求最值:1、若a,bR+且ab=p(p为常数)则 (当且仅当a=b时取等号)2、若a+b=S(a,bR+,则(当且仅当a=b时取等号),3、若a,b,cR+且abc=m(m为常数) ,则(当且仅当a=b时取等号)4、若a,b,cR+且a+b+c=n(n为常数) ,则(当且仅当时取等号)注:用均值不等式求最值要注意三点:正数定值检验等号是否成立,二、关于恒成立,求参数范围问题1、若f(x)a对xD恒成立,只须f(x)min(xD)a即可2、若f(x)a对xD对恒成立,只须f(x)min(xD)a即可三、应用问题,学习要求1、掌握应用不等式知识求最值问题2、初步学会不等式

2、知识的综合应用学习指导1、本讲重点:求最值问题,求参数范围问题2、本讲难点:不等式的综合应用3、剖析:本讲的难度较高,必须有扎实的基础知识,才能灵活运用,提高综合能力,典型例题解析例1:求下列函数的最值 的最小值 的最小值 的最大值 的最小值 的最小值, 的最小值 的最小值 的最大值 的最小值 的最大值 的最小值,解:(当且仅当 ,即x=1时取等号) 当c1时,x=1时,ymin=2当0x0,y0,lgx+lgy=1,求的最小值解:由已知xy=10且x0,y0 当且仅当 即 时取等号当x=2,y=5时, 有最小值2,例3:已知a,b是正数且a+b=1,求 的最小值解:(法一) 当且仅当 ,即

3、时,ymin=9,(法二)当且仅当 时取等号 当 时,ymin=9,例5:若正数a,b满足ab=a+b+3,求ab的取值范围解:(方法一)(当且仅当a=b时取等号)令 ,则 ,又,(方法二) , 又当且仅当 ,即a=3时,取等号 ab9,例6: 恒成立,则的取值范围是3,4) 对一切实数x,若不等式|x-3|+|x+2|a恒成立,则实数的范围是a2mcos-4m恒成立,求实数m的取值范围解:(方法一)原不等式令对 恒成立设 或 或,(方法二)令t=cos,则t2-mt+2m-20t2-2-m(t-2)0 m(t-2)5,(方法二)设两根分别为x1,x2,则x12,x22x1-20,x2-20

4、即 a5,(方法三)只须若一根大于2,一根小于2(方法一)f(2)0,则t2+(3+a)t+4=0在(0,+)有解,设f(t)=t2+(3+a)t+4对称轴在(0,+)上有两根,则在(0,+)上有一根,则f(0)0,40不可能综上:a-7,(方法二)当且仅当 时,即t=2时取等号,故a-7,例11:关于的方程有负数解,求k的取值范围解:原方程 或,例12:若关于x的方程lg(x-1)-lg(x-5)=1有实数解,试确定a的取值范围解:原方程由得:(a-10)x=49,当a10,例13:一段长为的篱笆围成一个一边靠墙的矩形菜园,求这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?解:设

5、矩形的宽为xm,则长为(l-2x)m,则当且仅当l-2x=2x,即 时,答:这个矩形的长为 ,宽为时 ,面积最大为,例14:某商场预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台 (xN*)且每批需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费43600元,现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当按排每批进货的数量,使资金够用?,解:设每批购入电视机x台,全年费用为y元,保管费与每批电视机总价值的比例系数为k,则 ,当x=400时,y=43600代入上式得(x-120)20 x=120答:每批进货120台,资金够用。,谢谢,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报