ImageVerifierCode 换一换
格式:PPT , 页数:34 ,大小:526.50KB ,
资源ID:12108586      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-12108586.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学期望04798.ppt)为本站会员(jmydc)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学期望04798.ppt

1、,在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了.,然而,在实际问题中,概率分布一般是较难确定的. 而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了.,某型号电视机的平均寿命 18000小时200小时,因此,在对随机变量的研究中,确定某些数字特征是重要的 .,我们先介绍随机变量的数学期望.,在这些数字特征中,最常用的是,期望和方差,随机变量的数学期望是概率论中最重要的概念之一. 它的定义来自习惯上的平均概念.,我们从离散型随机变量的数学期望开始.,一、离散型随机变量的数学期望,1、概念的引入:

2、,某车间对工人的生产情况进行考察. 车工小张每天生产的废品数X是一个随机变量. 如何定义X的平均值呢?,某电话交换台每天8:00-9:00收到的呼叫数X是一个随机变量. 如何定义X的平均值即该交换台每天8:00-9:00收到的平均呼叫数呢?,我们来看第一个问题.,若统计100天,例1 某车间对工人的生产情况进行考察. 车工小张每天生产的废品数X是一个随机变量. 如何定义X的平均值呢?,32天没有出废品; 30天每天出一件废品; 17天每天出两件废品; 21天每天出三件废品;,可以得到这100天中 每天的平均废品数为,这个数能否作为 X的平均值呢?,可以想象,若另外统计100天,车工小张不出废品

3、,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27.,n0天没有出废品; n1天每天出一件废品; n2天每天出两件废品; n3天每天出三件废品.,可以得到n天中每天的平均废品数为,(假定小张每天至多出三件废品),一般来说,若统计n天,这是 以频率为权的加权平均,由频率和概率的关系,不难想到,在求废品数X 的平均值时,用概率代替 频率,得平均值为,这是 以概率为权的加权平均,这样得到一个确定的数. 我们就用这个数作为随机变量X的平均值 .,这样做是否合理呢?,不妨把小张生产中出废品的情形用一个球箱模型来描述:,有一个箱子,里面装有10

4、个大小,形状完全相同的球,号码如图.,规定从箱中任意取出一个球,记下球上的号码,然后把球放回箱中为一次试验.,记X为所取出的球的号码(对应废品数) . X为随机变量,X的概率函数为,对试验次数(即天数)n,及小张的生产情况进行统计,统计他不出废品,出一件、二件、三件废品的天数n0,n1,n2,n3 , 并计算,与,进行比较.,则对X作一系列观察(试验),所得X的试验值的平均值也是随机的.,由此引入离散型r.vX的数学期望的定义如下:,对于一个随机变量,若它可能取的值是X1, X2, , 相应的概率为 p1, p2, ,但是,如果试验次数很大,出现Xk的频率会接近于pk,于是可期望试验值的平均值

5、接近,定义1 设X是离散型随机变量,它的概率函数是: P(X=Xk)=pk , k=1,2,也就是说,离散型随机变量的数学期望是一个绝对收敛的级数的和.,例1 某人的一串钥匙上有n把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门. 若每把钥匙试开一次后除去,求打开门时试开次数的数学期望.,解: 设试开次数为X,P(X=k)= 1/n , k=1,2,n,E(X),于是,二、连续型随机变量的数学期望,设X是连续型随机变量,其密度函数为f (x),在数轴上取很密的分点x0 x1b. 现在的问题是:a究竟应比b大多少,才能做到公正?,解:设甲赢的钱数为X,乙赢的钱数为Y,,

6、依题意,解:设甲赢的钱数为X,乙赢的钱数为Y,,为对双方公正,应有,依题意,E(X)=bp+(-a)q, E(Y)=aq+(-b)p,bp-aq=aq-bp=0,故,期望与风险并存数学家从期望值来观察风险,分析风险,以便作出正确的决策,例如,有一家个体户,有资金一笔,如经营西瓜,风险大但利润高(成功的概率为0.7,获利2000元); 如经营工艺品,风险小但获利少(95会赚,但利润为1000元)究竟该如何决策?,所以权衡下来,情愿“搏一记”,去经营西瓜,因它的期望值高,于是计算期望值:,若经营西瓜,期望值E1=0.72000=1400元,而经营工艺品期望值E20.951000950元,我们介绍了随机变量的数学期望,它反映了随机变量取值的平均水平,是随机变量的一个重要的数字特征.,接下来我们将向大家介绍随机变量另一个重要的数字特征:,方差,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报