ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:68.34KB ,
资源ID:11864292      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11864292.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学极限知识点总结.docx)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

高考数学极限知识点总结.docx

1、2019 年高考数学极限知识点总结2019 高考复习已经开始, 查字典数学网小编在此为大家整理了高考数学极限知识点,供大家参考,希望对高考生有所帮助。预祝大家取得理想的成绩!考试内容:教学归纳法,数学归纳法应用,数列的极限.函数的极限 . 根限的四则运算. 函数的连续性 .考试要求:(1) 理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题 .(2) 了解数列极限和函数极限的概念 .(3) 掌握极限的四则运算法则 ; 会求某些数列与函数的极限 .(4) 了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质 .13. 极 限 知识要点1. 第一数学归纳法:证明当 取第一个 时结

2、论正确 ; 假设当 ( ) 时,结论正确,证明当 时,结论成立 .第二数学归纳法:设是一个与正整数有关的命题,如果当 ( )时,成立 ;假设当 ( )时,成立,推得时,也成立 .那么,根据对一切自然数时,都成立 .2. 数列极限的表示方法:当 时, .第 1页几个常用极限: (为常数 )对于任意实常数,当 时,当 时,若 a = 1 ,则 ; 若 ,则不存在当 时,不存在数列极限的四则运算法则:如果,那么特别地,如果C 是常数,那么数列极限的应用:求无穷数列的各项和,特别地,当 时,无穷等比数列的各项和为 .( 化循环小数为分数方法同上式)注:并不是每一个无穷数列都有极限.3. 函数极限 ;当

3、自变量 无限趋近于常数 ( 但不等于 ) 时,如果函数 无限趋进于一个常数 ,就是说当 趋近于 时,函数 的极限为 . 记作 或当 时, .注:当 时, 是否存在极限与 在 处是否定义无关, 因为 并不要求 .( 当然, 在 是否有定义也与 在 处是否存在极限无关 . 函数 在 有定义是 存在的既不充分又不必要条件 .) 如 在 处无定义,但 存在,因为在 处左右极限均等于零 .第 2页函数极限的四则运算法则:如果,那么特别地,如果C 是常数,那么注:各个函数的极限都应存在.四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况.几个常用极限: (0 ( 1)4. 函数的连续性:如果

4、函数 f(x) , g(x) 在某一点 连续,那么函数在点 处都连续 .函数 f(x)在点 处连续必须满足三个条件:函数 f(x)在点 处有定义 ; 存在 ; 函数 f(x)在点 处的极限值等于该点的函数值,即.函数 f(x) 在点 处不连续 ( 间断 ) 的判定:如果函数 f(x) 在点 处有下列三种情况之一时,则称 为函数f(x)的不连续点 . f(x) 在点 处没有定义,即 不存在 ; 不存在 ; 存在,但 .5. 零点定理,介值定理,夹逼定理:零点定理:设函数 在闭区间 上连续,且 . 那么在开区间内至少有函数 的一个零点,即至少有一点 ( ) 使 .第 3页介值定理:设函数 在闭区间 上连续,且在这区间的端点取不同函数值, ,那么对于 之间任意的一个数 ,在开区间 内至少有一点 ,使得 ( ).夹逼定理:设当时,有,且,则必有注:表示以为的极限,则就无限趋近于零.(为最小整数 )高考数学极限知识点就为大家分享到这里,更多精彩内容请持续关注查字典数学网。第 4页

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报