ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:152KB ,
资源ID:11084909      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-11084909.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(七年级数学下册五六七章知识点归纳.doc)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

七年级数学下册五六七章知识点归纳.doc

1、七年级数学下册知识点归纳第五章 相交线与平行线5.1 相交线一、相交线 两条直线相交,形成 4 个角。1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:1、2。对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:1、3。对顶角相等。二、垂线1垂直:如果两条直线相交成直角,那么这两条直

2、线互相垂直。2垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。3垂足:两条垂线的交点叫垂足。4垂线特点:过一点有且只有一条直线与已知直线垂直。5点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。三、同位角、内错角、同旁内角 两条直线被第三条直线所截形成 8 个角。1同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线 EF 的同侧,具有这种位置关系的两个角叫同位角。如:1 和5。2内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线 EF 的两侧

3、,具有这种位置关系的两个角叫内错角。如:3 和5。3同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线 EF 的同侧,具有这种位置关系的两个角叫同旁内角。如:3 和6。5.2 平行线及其判定(一) 平行线1.平行:两条直线不相交。互相平行的两条直线,互为平行线。ab(在同一平面内,不相交的两条直线叫做平行线。 ) 2平行公理:经过直线外一点,有且只有一条直线与这条直线平行。3.平行公理推论:平行于同一直线的两条直线互相平行。如果 b/a,c/a,那么b/c(二)平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)2

4、. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 (同旁内角互补,两直线平行)推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。5.3 平行线的性质(一)平行线的性质1.两条平行线被第三条直线所截,同位角相等。 (两直线平行,同位角相等)2.两条平行线被第三条直线所截,内错角相等。 (两直线平行,内错角相等)3.两条平行线被第三条直线所截,同旁内角互补。 (两直线平行,同旁内角相等)(二)命题、定理、证明1命题的概念:判断一件事情的语句,叫做命题。 2.命

5、题的组成:每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果,那么”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。3真命题:正确的命题,题设成立,结论一定成立。 4假命题:错误的命题,题设成立,不能保证结论一定成立。5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据)6证明:推理的过程叫做证明。5.4 平移1平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换 (简称平移),平移不改变物体的形状和大小。2.平移的性质 把一个图形整体沿某一直线方向移动,会得到一个

6、新的图形,新图形与原图形的形状和大小完全相同。 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。第六章 实数6.1 平方根1、平方根(1)平方根的定义:如果一个数 x 的平方等于 a,那么这个数 x 就叫做 a的平方根即:如果 ,那么 x 叫做 a 的平方根2(2)开平方的定义:求一个数的平方根的运算,叫做开平方开平方运算的被开方数必须是非负数才有意义。(3)平方与开平方互为逆运算: 3 的平方等于 9,9 的平方根是 3 (4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0 的平方

7、根是 0.(5)符号:正数 a 的正的平方根可用 表示, 也是 a 的算术平方根;a正数 a 的负的平方根可用- 表示a(6) x2xa 是 x 的平方 x 的平方是 ax 是 a 的平方根 a 的平方根是 x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数 x 的平方等于 a,即,那么这个正数 x 叫做 a 的算术平方根a 的算x2术平方根记为 ,读作“根号 a”,a 叫做被开方数规定:0 的算术平方根是 0.也就是,在等式 (x0)中,规定 。2x(2) 的结果有两种情况: 当 a 是完全平方数时, 是一个有限数;a当 a 不是一个完全平方数时, 是一个无限不循a环小数。(3)

8、当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。(4)夹值法及估计一个(无理)数的大小(5) (x0) ax2 axa 是 x 的平方 x 的平方是 ax 是 a 的算术平方根 a 的算术平方根是 x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。( 0) 0a;注意 的双重非负性:a2 a- ( ax3xa 是 x 的立方 x 的立方是 ax 是 a 的立方根 a 的立方根是 x(6) ,这说明三次根号内的负号可以移到根号外面。336.3 实数 一、实数的概念及分类无理数:像前面的很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。实

9、数:有理数和无理数统称实数。1、实数的分类正有理数有理数 零 有限小数或无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数正实数实数 0负实数整数包括正整数、零、负整数。零和正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 等;32,7(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001等;第七章 平面直角坐标系7.1 平面直角坐标系(一) 有序数对1有序数对:用两个数来表示一个确定的位置,其中两个

10、数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b) 2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。 (二)平面直角坐标系1平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。2X 轴:水平的数轴叫 X 轴或横轴。向右方向为正方向。3Y 轴:竖直的数轴叫 Y 轴或纵轴。向上方向为正方向。4原点:两个数轴的交点叫做平面直角坐标系的原点。对应关系:平面直角坐标系内的点与有序实数对一一对应。坐标:对于平面内任一点 P,过 P 分别向 x 轴,y 轴作垂

11、线,垂足分别在 x轴,y 轴上,对应的数 a,b 分别叫点 P 的横坐标和纵坐标。(三)象限1象限:X 轴和 Y 轴把坐标平面分成四个部分,也叫四个象限。右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般,在 x轴和 y 轴取相同的单位长度。2象限的特点: 1、特殊位置的点的坐标的特点:(1)x 轴上的点的纵坐标为零;y 轴上的点的横坐标为零。(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴

12、;如果两点的纵坐标相同,则两点的连线平行于横轴。 2、点到轴及原点的距离:点到 x 轴的距离为|y|; 点到 y 轴的距离为|x|;点到原点的距离为 x 的平方加 y 的平方再开根号; 3、三大规律(1)平移规律:点的平移规律 左右平移纵坐标不变,横坐标左减右加;上下平移横坐标不变,纵坐标上加下减。图形的平移规律 找特殊点(2)对称规律关于 x 轴对称横坐标不变,纵坐标互为相反数; 关于 y 轴对称横坐标互为相反数,纵坐标不变;关于原点对称横纵坐标都互为相反数。 (3)位置规律各象限点的坐标符号:(注意:坐标轴上的点不属于任何一个象限)第二象限 第一象限 (,+) (+,+) 第三象限 第四象

13、限 (,) (+,) 7.2 坐标方法的简单应用(一)用坐标表示地理位置的过程:1建立坐标系,选择一个合适的参照点为原点,确定 X 轴和 Y 轴的正方向。2根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。3在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。(二)用坐标表示平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移 a 个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数 a,相应的新图形就把原图形向上(下)平移 a 个假设在平面直角坐标系上有一点 P(a,b)1.如果 P 点在第一象限,有 a0,b0 (横、纵坐标都大于 0) 2.如果 P 点在第二象限,有 a0 (横坐标小于0,纵坐标大于0)3如果 P 点在第三象限,有 a0,b0 (横坐标大于 0,纵坐标小于 0) 5如果 P 点在 x 轴上,有 b=0 (横轴上点的纵坐标为0)6如果 P 点在 y 轴上,有 a=0 (纵轴上点的横坐标为0)1. 如果点 P 位于原点,有 a=b=0 (原点上点的横、纵坐标都为 0)单位长度。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报