ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:273.50KB ,
资源ID:10698088      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-10698088.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初中几何中线段和差的最大值与最小值练习题(最全)打印版.doc)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

初中几何中线段和差的最大值与最小值练习题(最全)打印版.doc

1、初中几何中线段和(差)的最值问题一、两条线段和的最小值。基本图形解析:一) 、已知两个定点:1、在一条直线 m 上,求一点 P,使 PA+PB 最小;(1)点 A、B 在直线 m 两侧:(2)点 A、B 在直线同侧:A、A 是关于直线 m 的对称点。2、在直线 m、n 上分别找两点 P、Q,使 PA+PQ+QB 最小。(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:P mAB mB mB P mABA n mAB QP n mAB n mAB QP n mABB QP n mAB n mAB(4) 、台球两次碰壁模型变式一:已知点 A、B 位于直线 m,n 的

2、内侧,在直线 n、m 分别上求点 D、E 点,使得围成的四边形 ADEB 周长最短 .填空:最短周长=_变式二:已知点 A 位于直线 m,n 的内侧, 在直线 m、n 分别上求点 P、Q 点PA+PQ+QA 周长最短 .二) 、一个动点,一个定点:(一)动点在直线上运动:点 B 在直线 n 上运动,在直线 m 上找一点 P,使 PA+PB 最小(在图中画出点 P 和点 B)1、两点在直线两侧:2、两点在直线同侧:m nA P m nABm nA P m nAABmnAB EDmnABA BmnA PQmAA“A(二)动点在圆上运动点 B 在O 上运动,在直线 m 上找一点 P,使 PA+PB

3、最小(在图中画出点 P 和点B)1、点与圆在直线两侧:2、点与圆在直线同侧:三) 、已知 A、B 是两个定点,P、Q 是直线 m 上的两个动点,P 在 Q 的左侧,且 PQ 间长度恒定,在直线 m 上要求 P、Q 两点,使得 PA+PQ+QB 的值最小。( 原理用平移知识解)(1)点 A、B 在直线 m 两侧:过 A 点作 ACm,且 AC 长等于 PQ 长,连接 BC,交直线 m 于 Q,Q 向左平移 PQ 长,即为P 点,此时 P、Q 即为所求的点。(2)点 A、B 在直线 m 同侧:mOA P mOBAB mOA P mOABAmABBEQP mABQPmBQP mABCQP练习题1如图

4、,AOB=45,P 是AOB 内一点,PO=10,Q 、 R 分别是 OA、OB 上的动点,求PQR 周长的最小值为 2、 如图 1,在锐角三角形 ABC 中,AB=4 ,BAC=45,BAC 的平分线交 BC 于点D,M,N 分别是 AD 和 AB 上的动点,则 BM+MN 的最小值为 3、如图,在锐角三角形 ABC 中 ,AB= , BAC=45,BAC 的平分线交 BC 于52D,M、N 分别是 AD 和 AB 上的动点,则 BM+MN 的最小值是多少?4、如图 4 所示,等边ABC 的边长为 6,AD 是 BC 边上的中线,M 是 AD 上的动点,E 是 AC 边上一点.若 AE=2,

5、EM+CM 的最小值为 .5、如图 3,在直角梯形 ABCD 中,ABC90,ADBC,AD4,AB5,BC6,点 P 是AB 上一个动点,当 PCPD 的和最小时,PB 的长为_6、 如图 4,等腰梯形 ABCD 中,AB=AD=CD=1,ABC=60,P 是上底,下底中点 EF 直线上的一点,则 PA+PB 的最小值为 Q二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)基本图形解析:1、在一条直线 m 上,求一点 P,使 PA 与 PB 的差最大;(1)点 A、B 在直线 m 同侧:解析:延长 AB 交直线 m 于点 P,根据三角形两边之差小于第三边, PAPBAB,而PAPB

6、=AB 此时最大,因此点 P 为所求的点。(2)点 A、B 在直线 m 异侧:解析:过 B 作关于直线 m 的对称点 B,连接 AB交点直线 m 于 P,此时 PB=PB,PA-PB 最大值为 AB练习题1. 如图,抛物线 y x 2x 2 的顶点为 A,与 y 轴交于点 B14(1)求点 A、点 B 的坐标;(2)若点 P 是 x 轴上任意一点,求证:PAPB AB;(3)当 PAPB 最大时,求点 P 的坐标.mBAmB mABBPPmBAPPDCBA A BCD A BCD三、其它非基本图形类线段和差最值问题1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两

7、边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差。2、在转化较难进行时需要借助于三角形的中位线及直角三角形斜边上的中线。3、线段之和的问题往往是将各条线段串联起来,再连接首尾端点,根据两点之间线段最短以及点到线的距离垂线段最短的基本依据解决。1、如图,在ABC 中,C=90,AC=4,BC=2 ,点 A、C 分别在 x 轴、y 轴上,当点 A在 x 轴上运动时,点 C 随之在 y 轴上运动,在运动过程中,点 B 到原点的最大距离是( )A B C。 D 625622、已知:在ABC中,BC= a,AC=b,以AB为边作等边三角形ABD. 探究下列问题:(1)如图 1,当点 D 与点 C 位于直线 AB 的两侧时,a=b=3,且ACB=60,则 CD= ;(2)如图 2,当点 D 与点 C 位于直线 AB 的同侧时,a=b=6,且ACB=90,则 CD= ;(3)如图 3,当ACB 变化,且点 D 与点 C 位于直线 AB 的两侧时,求 CD 的最大值及相应的ACB 的度数.图 1 图 2 图 3

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报