1、芹池中学“导学、合作、展示、提升”课堂教学模式学案 九 年级 数学 科 主备:陈海宇 备课时间:2012 年 月 日总第 课时 上课时间:2012 年 月 日课题:相似图行的性质 个性备课及反思 组长签字: 学习目标:(知道学什么?)1、通过自己动手操作猜想验证相似多边形的性质。2、运用逆向思维猜想形似多边形的判定方法。3、了解黄金分割重点、难点:(知道怎样学!)相似多边形的性质,相似多边形性质的应用。自主学习一、 复习1、线段的比 2、成比例线段 3、比例的基本性质、反比性质、更比性质、等比性质、合比性质。二、合作探究1、利用课本“做一做”探究相似图形的性质。学生通过“量一量” 、 “算一算
2、”感悟相似图形的性质。2、进一步借助图 24.2.3 和图 24.2.4 找出对应线段、并算出对应线段的比,找到对应角、分析对应角之间的关系。明确相似多边形的性质: 。 3、逆向思维推测判定两个多边形相似的条件: 。4、解答例题运用相似图形的性质解决问题。5、利用课本“阅读材料”了解“黄金分割”黄金分割的意义: 。课后反思图例分析知识运用1、在下列四个命题中:所有等腰直角三角形都相似;所有等边三角形都相似;所有正方形都相似;所有菱形都相似其中真命题有( )A4 个 B3 个 C2 个 D1 个2、如果两个相似多边形的面积比为 9:4,那么这两个相似多边形的相似比为( )A9:4 B2 :3 C
3、3:2 D81:163、如图,在长为 8cm、宽为 4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A2cm B4cm C8cm D16cm 22224、一个七边形的边长为 1,2,3,4,5,6,7,另一个与它相似的七边形的最长边为9,那么后一个七边形的周长为( )A27 B36 C28 D255、两个相似多边形面积之比为 5:1,周长之比为 m:1,则 =( )5A1 B C D56、一个矩形剪去一个以宽为边长的正方形后,所剩下的矩形与原矩形相似,则原矩形的长与宽的比是( )A B C D 215232532157、在一次手工课上,小明把
4、一张长 AB=a cm,宽 BC=b cm 的矩形报纸 ABCD 沿着过AB、CD 的中点的直线 EF 对折后,发现矩形 AEFD 的长与宽之比等于矩形 ABCD 的长与宽之比,则 a:b 等于( )题有_.A :1 B1: C :1 D1: 2233(二)填空1、已知一个四边形的各边长分别是 3cm、4cm、5cm 、8cm ,另一个与它相似的四边形的最长边的长是 12cm,那么另一个四边形的周长是 cm2、已知两个相似五边形的相似比为 2:3,且它们的面积之差为 15cm2,则较小的五边形的面积为 cm3、如果两个相似多边形的最长边分别为 35cm 和 14cm,那么最短边分别为 5cm和
5、 cm4、如果多边形 ABCDE 与多边形 AB CDE相似,且A=48,则A= 度5、将一个四边形扩大 2 倍,则它的周长扩大 倍,面积扩大 倍6已知 AB=1, ,且 ,则 BC 的长为( ))15(AC2A、 B、 C、 D、21)53(21)53(7已知 P 是线段 AB 的黄金分割点,且 ,则 AB 的长为( )15APA、2 B、 C、2 或 D、以上都不对15拓展练习1、两个相似多边形的最长边分别为 10cm 和 20cm,其中一个多边形的最短边长 5 cm,另一个多边形的最短边长为_.2、在相同时刻的物高与影长成比例,如果一古塔在地面上的影长为 50m,同时,高为1.5m 的竿
6、的影长为 2.5m,则古塔的高为_ m.3、 ABCD 与 ABCD中, AB=3,BC=5,B=40, AB =6,要使 ABCD 与 相似,则 BC =_, B=_.4、以下五个命题:所有的正方形都相似;所有的矩形都相似;所有的三角形都相似; 所有的等腰直角三角形都相似;所有的正五边形都相似.其中正确的命5、在菱形 ABCD 和菱形 A B C D中, A= A=60,若 AB A B=1 3,则 BD A C=_.6、下列图形中一定相似的是( )A.有一个角相等的两个平行四边形 B.有一个角相等的两个等腰梯形C.有一个角相等的两个菱形 D.有一组邻边对应成比例的两平行四边形 7、如果一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( )A.21 B.41 C. 21 D.1 28、已知 P 为线段 AB 的黄金分割点,且 APPB,则 ( )A、 ; B、 ;2 PBAC、 ; D、 229、已知 P、Q 是线段 AB 的两个黄金分割点,且 AB10cm,则 PQ 长为( )A、 B、 C、 D、)15()15( )5(0)53(10.已知线段 AB=10cm,C、D 是 AB 上的两个黄金分割点,求线段 CD 的长.学后记:(在反思中成长,在反思中进步!)