第二讲巧解填空题的四大技法,1.填空题在高考试卷中不同省份的试卷所占分值的比重有所不同,其基本特点是:(1)小巧灵活、结构简单、概念性强;(2)运算量不大,不需要写出求解过程而只需写出结论;(3)从内容上看主要有两类:一类是定量填写,一类是定性填写.,2.解填空题的原则与策略、方法:,(1)基本原则
拿高分-选好题第二波高中新课程数学苏教二轮复习精选第二部分Tag内容描述:
1、第二讲巧解填空题的四大技法,1.填空题在高考试卷中不同省份的试卷所占分值的比重有所不同,其基本特点是:(1)小巧灵活、结构简单、概念性强;(2)运算量不大,不需要写出求解过程而只需写出结论;(3)从内容上看主要有两类:一类是定量填写,一类是定性填写.,2.解填空题的原则与策略、方法:,(1)基本原则:小题不能大做;,(2)基本策略:巧做;,(3)基本方法:直接法;特殊值法;图解法;构造法等.,对于计算型的试题,多通过直接计算求得结果,这是解决填空题的基本方法它是直接从题设出发,利用有关性质或结论,通过巧妙地变形,直接得到结果。
2、洞察高考43个热点,专题一 高考中选择题、 填空题解题能力大突破,第二部分,考查常见逻辑用语,解析 利用“全称命题的否定是特称命题”求解命题p的否定为“x1,x2R,(f(x2)f(x1)(x2x1)0” 答案 C,【例6】 (2012山东)设a0且a1,则“函数f(x)ax在R上是减函数”是“函数g(x)(2a)x3在R上是增函数”的 ( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件,解析 若函数f(x)ax在R上为减函数,则有0a1;若函数g(x)(2a)x3在R上为增函数,则有0a1或1a2,所以“函数f(x)ax在R上是减函数”是“函数g(x)(2a)x3在R上是增函数”的充分不。
3、 必考问题14直线、圆及其交汇问题 1(2012 江浙 )设 a R ,则“ a 1”是“直线l 1:ax 2y1 0 与直线 l 2:x 2y4 0 平行”的 () A 充分不必要条件B必要不充分条件 C充分必要条件D既不充分也不必要条件 答案 C 若 l1l 2,则 2a 2 0,a1.故 a1 是 l1 l2 的充要条件 2 (2012 陕西 )已知圆 C: x2 y2 4x 0。
4、必考问题 13 立体几何【真题体验】1(2012江苏,7)如图,在长方体 ABCD A1B1C1D1 中,ABAD3 cm,AA 12 cm,则四棱锥 A BB1D1D 的体积为_cm 3.解析 关键是求出四棱锥 A BB1D1D 的高,连接 AC 交 BD 于 O,在长方体中, ABAD 3, BD3 且 ACBD.2又 BB1底面 ABCD,BB1AC。
5、必考问题 7 等差数列、等比数列返回返回上页上页 下页下页抓住命 题 方向 必 备 知 识 方法热 点命 题 角度阅 卷老 师 叮咛抓 住 命 题 方 向返回返回上页上页 下页下页抓住命 题 方向 必 备 知 识 方法热 点命 题 角度阅 卷老 师 叮咛【 真 题 体 验 】1 (2012苏 州期中 )在等差数列 an中, a5 3, a6 2, 则 a3 a4 a8 _.解析 根据等差数列性质计算因为 an是等差数列,所以 a3 a4 a8 3(a5 a6) 3.答案 3返回返回上页上页 下页下页抓住命 题 方向 必 备 知 识 方法热 点命 题 角度阅 卷老 师 叮咛2 (2012苏锡 常 镇调 研 )在等差数列 an中。
6、专题二90分解答题大冲关与评分细则,第二部分,强化系统,精确计算,解析几何我们不再害怕,【抢分秘诀】 (1)解析几何,首先必须要保证计算正确因为解析几何都是环环相扣的,如果数值出现错误,后面的问题就白做了,还浪费时间(2)看到题目不要着急,仔细挑拣出已知条件,按题目深浅大致区分第一问和以后几问要用到的条件一些问题要通过画图才能看见隐含条件(例如交点、域和一些特别的几何图形等),继而找到思路,同时数形结合至关重要,要把平面几何知识与解析几何知识结合起来,使解题更加直观、简捷,(3)解题步骤不能太过臃肿,非得分点多写。
7、专题二90分解答题大冲关与评分细则,第二部分,掌握类型,巧妙构造,解决棘手的数列问题,【抢分秘诀】1求解数列的通项公式时,应该先根据已知条件确定数列的性质,然后通过条件的灵活变形构造或者直接转化为等差、等比数列的通项公式问题进行求解,所以要熟练掌握等差、等比数列的定义及其性质,才能简化运算过程2数列求和问题的关键是数列通项公式的求解,数列求和的方法取决于其通项公式的形式,基本思路是将其转化为等差、等比数列的求和问题进行求解,。