收藏 分享(赏)

离子除臭原理.doc

上传人:精品资料 文档编号:9955033 上传时间:2019-09-22 格式:DOC 页数:5 大小:88KB
下载 相关 举报
离子除臭原理.doc_第1页
第1页 / 共5页
离子除臭原理.doc_第2页
第2页 / 共5页
离子除臭原理.doc_第3页
第3页 / 共5页
离子除臭原理.doc_第4页
第4页 / 共5页
离子除臭原理.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、离子除臭工程目前,各种恶臭污染物(硫化氢、氨等) 的大量排放对环境造成了严重的影响,并威胁人类健康。这些污染物通常来自特定的垃圾或污水处理系统排放源。传统的气体净化技术一般投资大、周期长、运行费用高,而且处理效果也已很难满足日益严格的排放法规,因此人们正在寻求新的方法和途径。近年来兴起的离子除臭技术由于其能耗低,氧化性能强, 已有大量研究。对于这些问题的解决,研究者通过各种技术手段对光催化剂进行改性,进而提高离子除臭性能。另一方面通过和各种外加场(超声波、电化学、等离子体等) 进行耦合联用形成新型的高效离子反应技术,取得了显著效果。尤其是等离子体在环境污染物处理方面的应用研究引起了人们的极大关

2、注,被认为是环境污染物处理领域中最有广适性、最有发展前途的高新技术之一。目前,等离子体技术已经成功应用于恶臭气体的处理。废气处理工艺废气处理工艺确定由 于 废 气 形 成 的 大 部 分 组 分 为 有 机 污 染 物 质 。 离 子 法 处 理 工 艺 具 有 氧 化性 强 , 能 够 通 过 有 效 的 分 解 空 气 中 的 有 机 物 质 来 起 到 除 臭 的 作 用 , 处 理 过 程极 快 , 投 资 费 用 省 , 操 作 简 便 , 除 臭 效 果 显 著 , 除 臭 效 率 可 以 达 到 80%以 上 。废 气 处 理 工 艺 简 介废 气 通 过 风 机 抽 吸 进 入

3、 收 集 管 道 进 行 收 集 , 经 过 收 集 的 废 气 进 入 离 子 除臭 装 置 , 以 氧 化 离 子 作 为 氧 化 剂 , 它 几 乎 毫 无 选 择 的 对 废 气 中 大 量 有 机 污 染组 分 进 行 氧 化 分 解 ; 且 整 个 分 解 过 程 极 快 , 只 需 要 短 暂 的 停 留 时 间 即 可 以 分解 掉 有 机 污 染 组 分 , 该 处 理 设 备 可 谓 处 理 工 艺 的 核 心 部 分 , 经 除 臭 设 备 处理 后 的 气 体 已 经 能 够 达 标 外 排 。工艺原理离 子 法 废 气 处 理 系 统 合 成 主 要 包 含 主 反

4、应 器 , 光 触 媒 反 应 导 入 装 置 。 废气 经 过 收 集 系 统 收 集 后 进 入 离 子 催 化 氧 化 废 气 处 理 合 成 系 统 , 离 子 反 应 导 入装 置 对 主 反 应 器 产 生 离 子 , 在 其 内 部 的 价 电 子 被 激 发 跨 过 禁 带 跃 入 导 带 , 生离子除臭工程成 的 电 子 空 穴 被 导 入 主 反 应 器 内 , 并 扩 散 到 反 应 器 内 过 滤 板 的 二 氧 化 钛 表 面上 , 穿 过 界 面 与 吸 附 在 过 滤 板 上 的 物 质 发 生 氧 化 还 原 反 应 。 其 空 穴 能 量7.5eV, 氧 化

5、电 位 +3.0V, 具 有 极 强 的 氧 化 能 力 , 能 够 氧 化 有 机 化 合 物 , 达到 完 全 矿 化 的 程 度 , 生 成 二 氧 化 碳 、 水 和 无 机 物 。 处 理 后 的 废 气 继 续 进 入 水洗 塔 , 与 水 反 应 生 成 羟 基 自 由 基 , 电 子 具 有 还 原 性 , 能 与 氧 分 子 发 生 还 原 反应 生 成 过 氧 自 由 基 , 这 些 自 由 基 具 有 很 强 的 氧 化 能 力 , 也 能 够 氧 化 有 机 物 。从 而 使 得 废 气 达 到 完 全 的 净 化 , 达 标 排 放 。离 子 体 是 不 同 于 气

6、态 、 固 态 、 液 态 的 第 四 态 物 质 , 由 高 能 电 子 、 正 负 离子 、 自 由 基 ( OH、 H、 O、 O3 等 ) 和 中 性 粒 子 等 组 成 。 气 体 经 过 离 子 处 理 装置 的 反 应 器 区 域 时 , 在 高 能 电 子 和 自 由 基 强 氧 化 等 多 重 作 用 下 , 气 体 中 的 有机 物 分 子 链 被 断 开 , 发 生 一 系 列 复 杂 的 氧 化 还 原 反 应 , 生 成 CO2、 H2O 等无 害 物 质 , 正 负 离 子 可 以 空 气 清 新 。 另 外 , 借 助 离 子 体 中 的 离 子 与 物 体 的

7、凝并 作 用 , 可 以 对 小 至 亚 微 米 级 的 细 微 粒 物 ( 0.1 3 微 米 ) 进 行 有 效 的 收 集 。离 子 除 臭 装 置 的 特 点1、 脉 冲 电 压 高 达 50KV, 电 子 能 量 高 达 7ev;2、 耗 电 低 220V/110W;3、 模 块 化 组 合 设 计 , 现 场 安 装 简 便 ;4、 净 化 效 率 95 以 上 ;工艺流程图离子除臭法工艺流程图收集系统 离子除臭装置 排放烟囱废气排放进入风机离子除臭工程离子法去除恶臭气体原理等离子体是由电子、离子、自由基和中性粒子组成的中性导电性流体,在空气净化过程中常常由气体放电产生。等离子反应

8、器中放电电极表面、器壁表面及涂层置放的催化剂都有可能对等离子体化学反应起催化作用, 等离子体激发和催化剂活化联合作用。低温等离子体光催化系统里,去除污染物过程既有等离子体化学反应过程又有光催化反应过程,两者之间也可能存在协同作用。在等离子产生过程中,待处理的污染物受高能电子轰击可以直接被分解成单质或转化为无害物质。另外,高能电子的轰击使污染物电离、离解、激发,产生了大量等离子体。等离子体中的离子、电子、激发态原子、分子及自由基都是极活泼的反应性物种,使通常条件下难以进行或速度很慢的反应变得十分快速,它们再进一步与污染物分子、离子反应,从而使污染物得到降解,尤其有利于难降解污染物的处理。另外,由

9、于活性离子和自由基气体放电时一些高能激发粒子向下跃迁能产生紫外光线,当光子或电子的能量大于半导体禁带宽度时,就会激发半导体内的电子从价带跃迁至导带,形成具有很强活性的电子空穴对,并进一步诱导一系列氧化还原反应的进行。光生空穴具有很强的获得电子能力,可与催化剂表面吸附的 OH- 和 H2O 发生反应生成羟基自由基,从而进一步氧化污染物。由于等离子体放电光催化过程有大量等离子体、强活性电子冲击、紫外线辐射等综合因素的协同作用,因而可以更快速有效地分解空气中恶臭物质和灭菌除臭。等离子体是物质存在的第四形态。它是由电子、离子、中性原子、激发态原子、光子和自由基等组成。等离子体是电离度大于 0.1%,且

10、其正负电荷相等的电离气体。电子和正离子的电荷数相等,整体表现出电中性。等离子体净化技术的主要机理是:在外加电场的作用下,电极空间里的电子获得能量后加速运动,以每秒钟 300 万次至 3000 万次的速度去撞击异味气体分子,当电子的能量与异味气体分子的某一化学键键能相同或略大时,发生非弹性碰撞,电子将大部分动能转化为污染物分子的内能,从而引发了使其发生激发、离解或电离等一系列复杂的物理、化学反应,使得产生臭味的基团化学键断裂,再经过多级净化而达到除臭目的。离子除臭工程等离子气体净化装置最核心的工艺是利用高压电磁脉冲,将进入装置的气体在电极段释放出大量的电能,从而产生等离子体;等离子体是不同于气态

11、、固态、液态的第四态物质,由高能电子、正负离子、自由基团(OH、H、O、O3 等)和中性粒子等组成。气体经过 TDQ 等离子气体净化装置的反应器区域时,在高能电子和自由基强氧化等多重作用下,气体中的有机物分子链被断开,发生一系列复杂的氧化还原反应,生成 CO2、H2O 等无害物质,正负离子可以清新空气。另外,借助等离子体中的离子与物体的凝并作用,可以对气体中小至亚微米级的细微颗粒物(0.1-0.3 微米)进行有效的收集去除。其主要过程可通过以下反应式表达:(XY-污染物分子,e-电子)1)激发: e + XY XY* + e2)中性离解: e + XY X + Y + e3)直接离子化:e +

12、 XY XY+ + 2e4)离子化离解:e + XY X + Y+ + 2e,Y+ X + + 2e5)形成负离子:e + XY XY- (电子吸附)e + XY X + Y- (离解吸附)中性离解和离子化离解产生大量带有未成对电子的中性基团,使等离子体具有活泼的化学反应性。离子放置反应器不同位置和不放置时的比较类 别 能效/ g (kWh) - 1 降解率%放置板电极前 712 76放置板电极后 312 71不放置离子装置 316 44离子除臭工程典型气体净化工艺流程臭 气臭 气 收 集 系 统 过 滤 系 统 离 子 除 臭 设 备净 化 空 气排 入 大 气处理前后废气排放量及浓度变化污染物进入量(kg/h)排放量(kg/h)去除量(kg/h)去除效率(%)硫化氢 2.24 0.34 1.90 85氨 18.4 3.68 14.72 80甲硫醇 0.24 0.04 0.2 82恶臭 3800 700 3100 81.5管道 稳流室 粗过滤 高压脉冲离子激化 分解臭气 排放

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报