1、 31 3 M null null null null null null Vol. 31 null No. 32 0 0 9 M 6 JOURNAL OF TH E CH INA RAILWAY SOCIET Y June 2009 c I | : 1001null8360( 2009) 03null0089null05城市轨道交通乘客上车时间特性分析及建模曹守华, null 袁振洲, null 赵null 丹( Y v g Y “ d / L i , null 100044)K null 1 : g E Y Z H W ? p ,y s T b L Z H W ,d 9 s E Y Z H
2、 W + ,? C Z ( H W s + ,i s V a N = Z a 1 4 U y Y ; z 1. 3 m P H , Z s + b Z H W s + ,y s T Z H W , i L , E M 1 ; Z s + , z Z H W Y ,y I n z Z H W b L V , 9 T L = 4 T l 2 s, ? r Q E Y Z H W b1 o M : g E Y ; Z ; H W ; s C ; m s | : U121 null null D S : A null null doi: 10. 3969/ j. issn. 1001null8360.
3、 2009. 03. 016Characteristics Analysis and Model Establishment forPassenger Boarding Time in Urban Rail TransitCAO Shounullhua, null YUAN Zhennullzhou, null ZH AO Dan( MOE Key Laboratory for U rban T ransportation Complex System Theory and T echn ology, Beijing Jiaotong University, Beijing 100044, C
4、h ina)Abstract: T he piecew ise mathem atical model w as established for studying the rules of passenger boarding timein urban rail transit. Based on the field data of passenger boarding time, time char acteristics of boar ding pasnullsengers w ere analyzed, the average boar ding time is piecew ise
5、and is influenced by the seats count, passengerscount in the carriages and the urgent voice of closing doors and so on. Passengers usually get on a tr ain in twolayers as the door w idth is about 1. 3 m. Com bing w ith the layer piecew ise character istic of boar ding time, apiecew ise mathem atical
6、 model w as put forw ard, and the parameters of the model w ere fitted according to thefield data. Com bing with the layer phenom enon of boarding passengers, the w idth of the door was introducedinto the m odel as an important factor and the m odel considering the door w idth w as established. T he
7、 pr acticalexample show s that the error betw een the calculated results and the field data is less than 2 s, and the modalcan calculate passengers boarding tim e effectively.Key words: urban r ail transit; passenger ; boarding time; layer phenomenon; mathematical modelnull null E Y Z H W , T L H W
8、1 F s B , 7 % “ K l ? W bE Y Z H W , _ $ , r q , 7 S C ? S null M ! 9 ? S 1 i M 1 Z H W 9 ZE b , E Y Z H W + ,y l : 2008null05null27; : 2009null02null24 “ : S E 1 S “ ( 50778016) ;S E / ? Z 9 ( 863 9 ) “ ( 2006AA11Z201) ; = S S “ ( = 2008 101 | )T e : o ( 1976! ) , 3 , | , p V 3 bEnullmail: caoshouh
9、ua2003 163. comZ H W , 1 i l bS 1 E Y Z H W ,K * Kraft, Y T L H W 1 y 2 ; N , Weston4 9 T L H W 3 ;H ar ris L Weston 4 4 ; Lin 4 e T L H W # In * r T L H W 5 ; Puong Lin $ , 4 T L H W 6 ;Wiggenraad = z / HW Y 7 ; Pead Z _ N = + ,4 Y Z / H W y 8bS = E Y Z / H W ) ,P William H . K. Lam ? C , / H W / “
10、 K v , 4 T L HW L 9 ; 2 | M _ = Z 1 E = bW 8 , y Z null = Y , i B H W 9 T 10 ; y s Y a 5 r q 5 Z / H W d 9 11 ; Zhang Qi 1 Z / _ 12b8 , ( I n Z a _ Z aV a a z 1 o y Z H W Y b X Z / V / Z 5 / , Z , Y 5 / #b7 C S Z / i N 5 / # 5 b L = 4 ? C , S Z / V V s 3 : Z / a Z / a Z , t / V V ? B F b | g E Y Z H
11、 W $ , Z Y + ,s Z H W + ,8 t Y Z 1 o y , 7 y Z H W , 5 # _ 4 $ b Z / V B s , # I n Z / Z / Z W M Y , y Z / H W # ZN 5 / # 5 H W - 4 b1null E Y Z H W + T 2007 M 9 2008 M 2 W , | a _ , W _ , T S_ , | 3 a48 V N , g M Z H W L 4 , | Z H W r “ 158 ,? C Z H W / ? p :( 1) Z , H W d 9 ? C , z B H , Z H W 9 F
12、 7 9 F , H W Wi e L 1 “ , Z H W s y Y b( 2) Z ( H W s + m 1 V ? C , Z ( H W A s + b ) l 18 H ( +y , ( B ) ) , Z ( H W 9F M v , O H W , ( H W 0. 44 s/ ; ) v 18l 50 H , Z ( H W 9 F M 9 v , HW 1 - B , 0. 73 s/ ; v 50 H , Z H W 9 F 7 A 9 F , ( H W 1. 51 s/ b M , V? C N = Z i “ : B bV ( $ H Z null1; = Z
13、H W 7 S $ 9 H Z null2b( 3) bV Z H W 1 “ ? C , H , Z ,K 3 4 Z Z , m 2P U , 4 K 3 Z ( H W 0. 58 s/ bN , Z$ = bV , F y , O y Z v V , i y bV Z b 4 4 18 Z ( H W 0. 42 s/ b( 4) 1 4 U B F y Z 4 ? C , N = Z l H , 1 4 U ? F y Z , Z ( H W ; m 2 U , N = Z v , T i A , m 1 U b( 5) Z H s C 90 null M null null nul
14、l null null null 31 z 1. 3 m P H , Z H s ,_ z , Z Y V H Y s P ( 76% ) , m 3am 4 U , Z 8 l H , V ? 3 ( 20%) b( 6) z Z H W Y Z z H , H W + s Y , Z z H , H W $ 9 F b T 4 3. 6% Z z , Z H W K r 3. 75 s, ( H W r 1. 96 s, A z Z ( H W b2null Z H W 2. 1null Z H W k Z + s , I n Z H W s + , y / s :f (x) =A 1x3
15、 + A2 x2 + A 3x + A 4 x NB1 x + B2 N P( 1 )T , f (x ) ) 9 x H H W ; N ) y Z , N = s+ a, , s ) ( V , a y bV Z ; P N = Z r “ H , ) ( P= null2S/n, ,null2 N = Z “ , S N , n ; A 1aA2aA 3aA4aB1aB2aC1aC2aC3 b! ) N = X m, ? x, 5 Z H W t(x, m) = f (m + x ) - f (m) ( 2 )null null V m 5 4 V U b2.2null E 4 , Z
16、H W E , T /f ( x) =0. 0008x3 - 0. 0138x2 + nullnull null 0. 4283x + 0. 3909 x 180. 7241x - 5. 0764 null null null 18 50( 3 )T , ) ( V 16, y bV Z 2, 3, = Z “ 3. 8 / m2b E w L , m 6b2.3null s C Z H W H oogendoorn Daamen , Y z a H , s C , m 7 U i 491 3 g E Y Z H W + s # y null s T 13l = W ef f - (w max - dlayer )dlay er( 4 )T , x l x O K x ; l s ; W ef f Y r z ; w max K v Zz , 50 cm; dlay er W , Y l 45 cm ,Y z 1m H , W 45 cmbY L , “ Y z 9 F , W v 9v , w max )93 3 g E Y Z H W + s # y null