1、一三角函数公式1.诱导公式sin(-a) = - sin(a) cos(-a) = cos(a)sin(/2(90 度) - a) = cos(a)cos(/2(90 度) - a) = sin(a)sin(/2 (90 度)+ a) = cos(a)cos(/2 (90 度)+ a) = - sin(a)sin((180 度)- a) = sin(a)cos((180 度) - a) = - cos(a)sin((180 度)+ a) = - sin(a)cos((180 度)+ a) = - cos(a)2.两角和与差的三角函数sin(a + b) = sin(a)cos(b) + cos
2、()sin(b)cos(a + b) = cos(a)cos(b) - sin(a)sin(b)sin(a - b) = sin(a)cos(b) - cos(a)sin(b)cos(a - b) = cos(a)cos(b) + sin(a)sin(b)tan(a + b) = tan(a) + tan(b) / 1 - tan(a)tan(b)tan(a - b) = tan(a) - tan(b) / 1 + tan(a)tan(b) 3.和差化积公式 sin(a) + sin(b) = 2sin(a + b)/2cos(a - b)/2sin(a) sin(b) = 2cos(a +
3、b)/2sin(a - b)/2 cos(a) + cos(b) = 2cos(a + b)/2cos(a - b)/2 cos(a) - cos(b) = - 2sin(a + b)/2sin(a - b)/2 4.积化和差公式 sin(a)sin(b) = - 1/2cos(a + b) - cos(a - b)cos(a)cos(b) = 1/2cos(a + b) + cos(a -b)sin(a)cos(b) = 1/2sin(a + b) + sin(a - b)5.二倍角公式 sin(2a) = 2sin(a)cos(b) cos(2a) = cos2(a) - sin2(a)
4、= 2cos2(a) -1=1 - 2sin2(a)6.半角公式 sin2(a/2) = 1 - cos(a) / 2cos2(a/2) = 1 + cos(a) / 2tan(a/2) = 1 - cos(a) /sin(a) = sina / 1 + cos(a)7.万能公式 sin(a) = 2tan(a/2) / 1+tan2(a/2)cos(a) = 1-tan2(a/2) / 1+tan2(a/2)tan(a) = 2tan(a/2) / 1-tan2(a/2)二反三角函数公式反三角函数其他公式:cos(arcsinx)=(1-x2)arcsin(-x)=-arcsinxarcco
5、s(-x)=-arccosxarctan(-x)=-arctanxarccot(-x)=-arccotxarcsinx+arccosx=/2=arctanx+arccotxsin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=xarcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + 1*3*5(x7)/(2*4*6*7)+(2k+1)!*x(2k-1)/(2k!*(2k+1)+ (|x|0,arctanx=/2-arctan1/x,arccotx 类似若 (arctanx+arctany)(-/2,/2 ),则 arctanx+arctany=arctan(x+y)/(1-xy)例如,arcsin 表示角 ,满足 -/2 ,/2 且 sin=;arccos(-4/5)表示角 ,满足0 , 且 cos=-4/5;arctan2 表示角 ,满足 (-/2,/2)且 tan=2