1、2016届甘肃省高台县第一中学高三上学期第二次检测数学(理)试卷第I 卷(选择题)一、选择题:共12 题每题5 分共60 分1设全集为R,函数 f(x)=1-的定义域为M , 则 RC为A、(-,1) B、(1, + ) C 、(-,1 D、1, + )2已知圆的方程为2680y,设该圆过点的最长弦和最短弦分别为AC 和BD,则四边形ABCD 的面积为A.10 B.20 C.30 D.403某市统计局就某地居民的月收入调查了10 000 人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点 ,不包括右端点,如第一组表示收入在1 000,1 500)内).根据频率分布直方图算出样本数据
2、的中位数是A.2360 B.2380 C.2400 D.24204函数ysin2x按向量(,1)4平移后得到的函数解析式为A.ycos2x1 B. ycos2x 1 C. sin(2)14yxD. sin(2)14yx5如图,某几何体的正视图、侧视图和俯视图分别是等边三角形、等腰三角形和菱形,则该几何体的体积为6已知等差数列 的前n项和为Sn, 5,aS=15,则数列 的前100 项和为A. 10B. 91C. 0 D. 17若变量x,y 满足条件 ,则z2xy的最大值为A.1 B.0 C.3 D.48某同学设计如图的程序框图用以计算 的值,则在判断框中应填写9设偶函数f(x)满足f(x)x2
3、40) (,则x|f(x-2)0=A. x| x4 B. x| x4 C. x| x6 D. x| x2 10在棱长为1 的正方体中ABCD-A 1B1C1D1中,M 和N 分别是A 1B1和BB 1的中点,那么直线AM 与CN 所成的角的余弦值是A. 25B. C. 35D.011已知双曲线 21mxy的右顶点为A ,若该双曲线右支上存在两点B、C使得ABC为等腰直角三角形,则实数m 的值可能为A. 12B.1 C.2 D.312已知 a为常数, ()ln)fxax有两个极值点 ,则第II 卷(非选择题)二、填空题:共4 题每题5 分共20 分13抛物线24xy的焦点坐标是. 14若a0,b
4、0,且函数 在x=1 处有极值,则ab 的最大值为 15设和为不重合的两个平面,给出下列命题:若内的两条相交直线分别平行于内的两条直线,则;若外的一条直线l与内的一条直线平行,则l ;设,若内有一条直线垂直于 内的两条直线垂直.其中所有的真命题的序号是 16在ABC中, D为BC 边上的一点,BC=3BD ,AD= 2 , ABD=135 ,若AC= 2AB,则BD= 三、解答题:共6 题每题12 分共72 分17已知函数. (1)求f( x)的最小正周期;(2)求f( x)的在区间-64【 , 】上的最大值和最小值.18在锐角ABC 中,内角A、B 、的对边分别为a、b、c,且 .(1)求角
5、A的大小;(2) 若a=6,b+c=8 ,求ABC 的面积.19已知等差数列a n的前n 项和为Sn,且a3=5,S15=225.(1)求数列 a n 的通项公式;(2)设bn= 3 a n +2n,求数列bn 的前n 项和T n.20如图,四边形ABCD 为正方形,PD平面ABCD ,PDQA,QA AB12PD(1)证明:平面PQC平面DCQ;(2)求二面角Q BPC的余弦值.21已知函数21(0)ffxx-1()=e;(1)求f(x)的解析式及单调区间;(2) 最大值.22如图,椭圆M:21(0)xyab的离心率为32,直线 xa和 yb所围成的矩形ABCD 的面积为8.(1)求椭圆M 的标准方程;(2)设直线 与椭圆M 有两个不同的交点与矩形ABCD 有两个不同的交点 的最大值及取得最大值时m 的值.参考答案