收藏 分享(赏)

有机化学竞赛笔记.doc

上传人:精品资料 文档编号:9726761 上传时间:2019-08-28 格式:DOC 页数:32 大小:427.50KB
下载 相关 举报
有机化学竞赛笔记.doc_第1页
第1页 / 共32页
有机化学竞赛笔记.doc_第2页
第2页 / 共32页
有机化学竞赛笔记.doc_第3页
第3页 / 共32页
有机化学竞赛笔记.doc_第4页
第4页 / 共32页
有机化学竞赛笔记.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、7.1 有机化合物的分类(1)按照碳骨架分类按照碳链结合方式的不同,有机化合物可分为三类a. 开链化合物(脂肪族化合物)只含碳和氢的链烃类化合物。此类化合物的分子中碳原子之间互相连接而成碳链,而不是成环状。这类化合物也称脂肪族化合物。例如: 正丁烷 正丁醇 十八酸b. 碳环族化合物 分子中具有碳原子连接而成的闭合环。这类化合物由于成环方式不同又可分为两类:(a) 脂环族: 性质与脂肪族化合物相似的碳环化合物,这类化合物可以看作由开链化合物连接闭合成环;例如:环己烷 (b) 芳香族:含有苯环和稠苯环,性质与脂肪族化合物不同的化合物例如:苯 c. 杂环化合物 在这类化合物的分子中,组成环的原子除碳

2、原子外还有氧、氮、硫等杂原子。例如:例如:呋喃 噻吩 (2)按照官能团分类:决定一类化合物典型性质的原子或原子团叫官能团。这些原子或者原子团能体现整个化合物的特征结构,也决定着化合物的一些主要性质。一般来说,含有相同官能团的有机化合物能起相似的化学反应,因此把它们看作为同一类化合物。按官能团分类为研究数目庞大的有机化合物提供了更系统更方便的研究方法,并且有机化合物的反应主要在官能团处发生。表7-1 一些重要官能团的结构和名称化合物类别 官能团结构 官能团名称 实例烯烃 双键 乙烯炔烃 三键 乙炔卤代烃 卤素 氯苯醇和酚 羟基 乙醇醚 醚键 乙醚醛和酮 羰基 乙醛羧酸 羧基 乙酸硝基化合物 硝基

3、 硝基苯胺 氨基 苯胺偶氮化合物 重氮基 偶氮苯硫醇和硫酚 巯基 乙硫醇磺酸 磺酸基 苯磺酸具有相同官能团和相似结构的化合物具有相似的性质,化合物按照官能团进行分类,反映了有机化合物之间的内在联系。7.2 饱和烃和不饱和脂肪烃由碳和氢两种元素组成的有机物叫做烃(hydrocarbon),也叫做碳氢化合物。根据分子中的碳架结构,可以把烃分成饱和烃与不饱和烃两大类。饱和烃一般指烷烃和环烷烃,不饱和烃一般包括烯烃、炔烃和芳香烃。7.2.1 烷烃烷烃是指分子中的碳原子以单键相连,其余的价键都与氢原子结合而成的化合物。烷烃属于饱和烃,饱和意味着分子中的每一个碳原子都达到了与其他原子结合的最大限度。烷烃中

4、最简单的是甲烷,分子式是CH 4,乙烷、丙烷、丁烷和戊烷的分子式分别为:C 2H6,C 3H8,C 4H10和C 5H12。上述烷烃的性质也很相似。这样的一系列化合物叫做同系列。同系列中的各个化合物彼此互称为同系物。CH 2则叫做同系列的系差。同系物具有相类似的化学性质,其物理性质一般随分子中碳原子的递增而有规律的变化。总体来说,分子量越大的烷烃,其熔沸点越高,密度越大。通式: C nH2n+2简式:CH 3(CH2)3CH3, CH3CH2CH(CH3)2, C(CH3)41. 烷烃的结构甲烷是最低级的烷烃,在讨论烷烃分子结构之前,首先介绍甲烷的分子结构。甲烷的分子式为CH 4,一般把其结构

5、式写成:( )。但这只能说明分子中碳原子与四个氢原子直接相连,而没有表示出氢原子与碳原子在空间的相对位置,即分子的立体形象。实验证明甲烷分子里的碳原子和四个氢原子不在一个平面上,而是形成正四面体的立体结构,可用模型来表示(见下图)。甲烷中的碳原子采取sp杂化H CH间键的夹角是10928。图:甲烷分子模型sp杂化又称正四面体杂化,四个sp 杂化轨道对称地分布在碳原子的周围,它的对称轴之间的夹角是109.5 ,这样的排布可以使四个轨道彼此在空间的距离最远,电子之间的相互斥力最小,体系最稳定。由碳原子的四个sp杂化轨道与四个氢原子的 s轨道进行重叠,形成四个相等的CH共价键而构成甲烷分子。在构成甲

6、烷分子时,碳氢键是轨道沿着对称轴方向相互重叠所形成的共价键,其特点是电子云分布呈圆柱形轴对称,两核连线之间电子云密度最大,这种键叫做键。键比较牢固,能自由旋转,而不影响电子云重叠程度。一个碳原子的sp杂化轨道与另一个碳原子的sp杂化轨道也能形成CC之间的键。任何两个原子轨道,只要是沿着轨道对称轴方向相互重叠所形成的键都叫键。2. 烷烃的化学性质烷烃中的碳都是饱和的,所以化学性质稳定。常温下与强酸、强碱、强氧化剂及还原剂都不易反应,所以通常除作为燃料外,常用作溶剂,润滑油来使用,在较特殊的条件下,烷烃也显示一定的反应性能,而这些化学性质在基本有机原料工业及石油化工中都非常重要。结构决定性质,同系

7、列中各化合物的结构是相似的,因此它们的化学性质也基本相似,但是同系列中碳原子数差别较大的同系物间,反应速率会有较大差别,有时甚至不反应。(1)取代反应烷烃分子中的氢原子被其它原子或基团所取代的反应称为取代反应。如被卤素取代的反应称卤代反应。卤代反应烷烃与卤素在室温和黑暗中并不起反应,但在高温下或光照下,可以发生反应生成卤代烷和卤化氢。工业上常用甲烷的氯代反应来生产氯甲烷,所生成的氯甲烷可以继续反应生成二氯甲烷、三氯甲烷(氯仿)及四氯化碳.不同卤素的反应活性为:F 2Cl2Br2I2 不同氢原子的反应活性: 3氢2氢1 氢(参见课本p174)卤代反应的机理自由基历程反应机理是指化学反应所经历的途

8、径和过程(也叫反应历程、反应机制)。反应机理是基于大量的实验事实而做出的理论推导。了解反应机理对掌握反应规律,控制反应条件等生产实践有指导意义。烷烃的卤代反应属于自由基反应,反应机理大致经历以下三个步骤:(i) 链的引发在光照或高温下,氯分子吸收能量而分解为两活泼的氯原子:(ii) 链的增长氯原子可以夺取烷烃分子中的氢原子而生成甲基自由基CH 3,CH 3 再与氯分子作用生成一氯甲烷和一个新的氯原子,反应可重复进行。链的增长阶段根据反应物的量,也可以逐步生成二氯甲烷、三氯甲烷和四氯甲烷:(iii) 链的终止自由基之间的彼此结合,反应就会逐渐停止。如:自由基反应一般是由高温、光照、辐射或引发剂(

9、如过氧化物)所引起。通常在气相或非极性溶剂进行。(2)氧化反应:引入氧或出去氢为氧化;引入氢或去掉氧为还原。烷烃在空气中燃烧、完全氧化而生成碳和水,同时放出大量热能。烷烃燃烧时放出大量的热。这就是沼气、天然气、石油能作为能源的基础。3. 烷烃的物理性质沸点(bp):烷烃的沸点随分子量的增加而升高(因为分子间作用力随分子量增加而增大)一般:C 4以下为气体,C 5C 17为液体,C 17为固体。支链烷烃的沸点奇数碳链烷烃的熔点,(因偶数碳链具有较高的对称性,分子间作用力增大)。相对密度:烷烃的相对密度随其分子量的增加而逐渐增大,因为烷烃分子间的作用力随其分子量的增大而增大,其分子排列更加紧密。溶

10、解度:烷烃是非极性分子,根据“相似相溶”经验规律,烷烃不溶于水,而易溶于有机溶剂(如四氯化碳、乙醚等)。7.2.2 烯烃分子结构中碳原子间含有碳碳双键(C C )的烃,叫做 烯烃,它的通式为C nH2n。1烯烃的结构乙烯是烯烃中的第一个成员,它的构造式为:近代物理方法测定,乙烯分子中的六个原子处于同一平面,HCH和HC=C的键角分别为117.3 和121.4,碳碳双键的键长为0.134nm,碳氢键的键长为0.108nm,乙烯分子中碳碳双键的键长比乙烷分子中碳碳单键的键长短。图:乙烯分子的模型根据杂化轨道理论,碳原子在形成双键时进行了sp杂化,三条杂化轨道分布在同一平面上,以碳原子为中心向平面的

11、三个方向延伸,其中两条轨道与两个氢原子的1s轨道重叠形成两个sp-s的键, C还剩余一个杂化轨道与另一个碳原子的杂化轨道重叠形成sp-sp的另一个键。这两个碳原子上还各有一条未参与杂化的p轨道垂直于sp 杂化轨道的平面,彼此“头碰头、脚碰脚” 地重叠形成键。 键电子云分布在分子平面的上方和下方。图:乙烯分子中的键和键尽管在乙烯的构造式中用两个相同的短横来表示碳碳双键,但碳碳双键中的两个键是不同的,其中一个是键,另一个是键,为了保证组成键的两条p轨道处于平行状态,此处的键不能象单独存在时那样自由旋转。2烯烃的化学性质烯烃中碳碳双键的键的键能比键的小,因而容易在双键的碳原子上加两个原子或原子团而转

12、变成更强的键。键容易受到带正电或带部分正电荷的亲电性质的分子或离子的攻击而发生反应,具有亲电性能的试剂叫做亲电试剂。由亲电试剂的作用而引起的加成反应叫做亲电加成反应。(1)亲电加成反应a. 加卤化氢烯烃能与卤化氢气体或浓的氢卤酸起加成反应,生成卤代烷。亲电加成反应的难易程度:碘化氢最易发生加成,溴化氢次之,氯化氢最难(HIHBrBCl)。工业上制备氯乙烷的方法之一:乙烯在三氯化铝催化下,通过加成反应实现丙烯与卤化氢(极性试剂)加成时,可能生成两种加成产物。实验证明丙烯与卤化氢加成的主要产物是2卤丙烷。根据大量的实验结果归纳出一条经验规律,凡不对称烯烃与卤化氢等极性试剂进行加成时,试剂中带正电荷

13、的部分总是加到含氢较多的双键碳原子上,试剂中带负电荷的部分则加到含氢较少或不含氢的双键碳原子上-马尔柯夫尼柯夫(Markovnikov) 规则,简称马氏规则或不对称烯烃加成规则。利用这个规则可以预测不对称烯烃的加成产物。例如:烯烃与卤化氢加成反应的历程:第一步反应是极性分子卤化氢中的质子首先与双键上的p 电子结合,经p 络合物生成碳正离子;第二步反应是碳正离子再与卤负离子结合,生成卤代烃:其中第一步是决定整个反应速度的步骤,在这一步中生成的碳正离子愈稳定,反应愈容易进行。马氏规则可用碳正离子的稳定性来解释:根据物理学上的规律,一个带电体系的稳定性决定于电荷的分布情况,电荷愈分散体系愈稳定。碳正

14、离子的稳定性也同样取决于其本身电荷的分布情况。碳正离子的稳定性:在丙烯与HBr进行的加成反应的第一步中,产生的碳正离子可能有两种:由于反应速度决定步骤是生成碳正离子的第一步,因而两种卤代烷在最后产物中的比例取决于生成这两种碳正离子的相对速度,后者则取决于生成它们的过渡状态能量的高低,过度状态的能量低,活化能小,反应速度快。由于仲碳正离子比伯碳正离子稳定,相应的过渡状态的能量前者比后者低,因而2溴丙烷生成的速度较快是主要产物。图:丙烯与氯化氢加成反应的能线图在卤化氢与不对称烯烃加成反应中,生成的主要活性中间体是最稳定的碳正离子,反应的主要产物是它与负离子结合所形成的化合物。当不规则烯烃与HXO、

15、H2SO4等加成反应时,反应也符合马氏规则。b. 与卤素起反应当乙烯与溴(红棕色)起反应时生成无色的1,2二溴乙烷(CH2BrCH2Br)液体。常用于烯烃的鉴别。(2)催化加氢在催化剂(Pt、Pd、Ni等过渡金属)存在下,烯烃与氢加成生成烷烃烯烃为气体时,可以和氢气混合,再通过催化剂进行加成反应。烯烃为液体或固体时,可先溶解在惰性溶剂中,加催化剂后通入氢气,一起摇动进行加氢反应。催化加氢反应可以定量的进行,每打开一个p 键,就消耗一摩尔氢气,计算消耗掉的氢气的体积,可以测定双键的数目。烯烃的催化加氢是放热反应,放出的热量称为氢化热。如加氢所得的产物相同时,氢化热越小,原来的烯烃就越稳定。(3)

16、氧化反应烯烃容易被高锰酸钾等氧化剂所氧化,氧化发生在双键处,生成中间体之后生成邻位二元醇。反应往往难于停留在这一阶段,生成的邻位二元醇会进一步被氧化,结果使碳链在原来的双键处断裂,生成氧化程度更高的产物。烯烃能使高锰酸钾酸性溶液的紫色迅速褪去,并生成褐色的二氧化锰沉淀,故实验室中常用高锰酸钾的碱性溶液来鉴别碳碳双键的存在。7.2.3 炔烃和二烯烃 分子结构中碳原子间含有碳碳叁键(CC)的烃,叫做炔烃,它的通式为C nH2n-2。例如:CH 3CH 2CH 2CCH 1- 戊炔CH3CH 2CCCH 3 2-戊炔3-甲基-1- 丁炔CH3CHCHCCH 3-戊烯-1-炔1 炔烃的结构乙炔是最简单

17、的炔烃。其化学式是C 2H2,结构式是:HCC H,所有的原子在一条直线上, 和CH的键长分别为0.12nm 和0.106nm 。乙炔分子中的碳原子是sp杂化,两个碳原子以sp杂化轨道互相重叠形成一个碳碳键,余下的两个sp杂化轨道分别与氢原子的1s轨道重叠形成两个碳氢键。每个碳原子上都剩下两个p轨道,它们两两平行在侧面重叠,形成两个互相垂直的键,电子云对称分布在键轴的周围呈圆柱体形状2乙炔的化学性质:三键是炔烃的官能团,炔烃的化学性质主要发生在三键上。组成三键的二个键与烯烃中的键相似,容易断裂,表现出一系列的化学活泼性,能发生加成、氧化、聚合等反应。但另一方面,炔烃中的键和烯烃中的 键在强度上

18、有差异,造成二者在化学性质上有差别,即炔烃的亲电加成活泼性不如烯烃,以及三键碳上的氢显示一定的酸性等。(1)加成反应乙炔与卤素加成的速度比乙烯慢,乙烯可以使溴水很快褪色,而乙炔则需要较长时间才能使溴水褪色。双键比三键活泼:因碳正离子的稳定性:在有催化剂的条件,炔烃也能与氯化氢起加成反应生成氯代烃。例:不规则的烯烃与HX反应时,其产物也符合马氏加成。(2)加水反应炔烃在稀酸水溶液中用汞盐作催化剂可与水进行加成反应。如,乙炔在硫酸和硫酸汞存在下,可与水加成生成乙醛(用于工业制备乙醛):乙炔与水加成生成不稳定的中间加成物乙烯醇,它很快发生异构化,形成稳定的羰基化合物。炔烃与水的加成遵从马氏规则,因此

19、除乙炔外,其它炔烃与水加成均生成酮:(3)氧化反应和乙烯一样,炔烃也容易被高锰酸钾等氧化剂氧化,但其产物主要是羧酸:一般:反应使高锰酸钾溶液褪色,生成二氧化锰沉淀,可用作炔烃的定性鉴定反应。(4)金属炔化物的生成连在含三键的碳原子上的氢具有较大的活泼性,能被金属置换而生成炔的金属衍生物。例:乙炔通入银盐或亚铜盐的氨溶液中时就立即生成白色的乙炔银或红棕色的乙炔亚铜沉淀。型的炔烃都可以发生相似的反应(鉴别有活泼H的炔烃)。这一反应可用来鉴别 (炔1)的存在。金属炔化物在干燥状态下受热或震动时会发生爆炸,但潮湿时没有危险,故实验后应加硝酸使其分解。7.2.4 二烯烃分子中含有两个双键的开链烃,叫做二

20、烯烃,二烯烃的通式和炔烃的相同C nH2n-2。1. 二烯烃的分类根据二烯烃中双键的相对位置可把二烯烃分为三类:1)共轭二烯烃即含有 体系的二烯烃,两个双键被一个单键隔开。这样的体系也叫做共轭体系,两个双键叫做共轭双键。例如:1,3-丁二烯顺,顺2,4己二烯,(Z), (Z)2,4己二烯 顺, 反2,4己二烯,(Z), (E)2,4己二烯反,反2,4己二烯,(E), (E)2,4己二烯2)累积二烯烃即含有 体系的二烯烃,两个双键积累在同一个碳原子上。例如:丙二烯3)孤立二烯烃即含有 体系的二烯烃,两个双键被两个或两个以上的单键隔开。例如:1,4-戊二烯2. 共轭二烯烃的结构最简单同时最重要的共

21、轭二烯烃是1,3丁二烯,其结构式为 。在1,3丁二烯分子中,每一个碳原子都是sp杂化,它们以sp 杂化轨道相互重叠或与氢原子的 1s轨道重叠形成9个共平面的键。这样,每个碳原子各留下一个p轨道,它们相互平行并垂直于键所在的平面,因而相邻的p轨道可以在侧面相互重叠。 键长平均化;体系能量降低,稳定性增加。3. 共轭二烯烃的化学性质(1)1,2-加成和1,4加成共轭二烯烃除了具有烯烃的亲电加成、氧化等反应外,还有自己一些特殊反应。室温下以1,4加成为主。影响加成反应的因素:(a)溶剂:极性溶剂有利于1.4加成(极性分散)的进行(b)温度:低温有利与1,2加成,高温有利于1,4加成的进行(2)双烯合

22、成共轭二烯烃和某些具有碳碳双键的化合物进行1,4-加成反应,生成环状化合物,这个反应叫做双烯合成。例如:这一反应可以用来合成六元环,也可用于鉴别或者提纯共轭二烯烃。双烯体上有供电子基,亲双烯体上有吸电子基时,反应较易进行,如:7.3 醇、酚和醚醇、酚、醚可以看作是水分子中的氢原子被烃基取代的衍生物。水分子中的一个氢原子被脂肪烃基取代的是醇;被芳香烃基取代且羟基与苯环直接相连的是酚;如果两个氢原子都被烃基取代的衍生物就是醚。羟基是醇的特征官能团。按照分子中所含羟基的数目,又可分为一元醇、二元醇和多元醇。例如:也可按分子中的烃基的饱和度,分为饱和醇和不饱和醇。例如:ROH和RCH CH CH 2O

23、H7.3.1 醇1. 醇的结构醇分子中,氧原子的价层电子为sp杂化,其中两个sp 杂化轨道分别与碳原子和氢原子结合成CO,OH两个键。余下两个sp杂化轨道被未共用电子对占据。由于氧原子中有未共用电子对,可以看作为路易斯碱,能溶于浓强酸中。醇分子中氧的价键及未共用电子对分布的示意图2. 醇的物理性质十二个碳原子以下的饱和一元醇是液体;十二个碳原子以上者为蜡状固体;低级的醇有酒味,中级的醇有强烈的气味,高级醇一般无气味。一元醇的比重都小于1,多元醇和芳香醇的比重则大于1。醇的沸点比分子量相当的烃高出很多,例如:乙醇的沸点比丙烷高122之多,醇分子间已具备了形成氢键的条件,它们也可像水分子之间那样通

24、过氢键而缔合起来。但是这种缔合现象只存在于液态和固态中,而气态的醇是以单分子存在的。因此,醇从液态转变为气态时,除了需克服分子间的引力外,还需额外的能量来破坏氢键,这就大大地提高了它的沸点。沸点随分子量增加而升高;直链支链(同C原子数) 多元醇的沸点高,如:乙醇:78.3,乙二醇 197; 丙三醇 290。 低级醇与MgCl 2,CaCl 2形成结晶状的分子化合物,如 MgCl26CH3OH、CaCl 23C2H5OH,所以醇不能用这些盐干燥,一般用无水 K2CO3、CaO等来干燥。3 醇的化学性质:醇的官能团是羟基,它由氧、氢两原子组成。氧原子有很强的电负性,所以醇分子中的C-O键和O-H

25、键的电子云密度都向氧原子集中,C-O键和O-H键都有明显的极性。键的极性有利于异裂反应的发生;所以C-O 键和O-H键都比较活泼,多数反应都发生在这两个部位(上式虚线所指的地方)。另外,由于诱导效应,与羟基邻近的碳原子上的氢也参与某些反应。1)醇的酸性醇羟基中,由于氢与氧相连,氧的电负性大于氢,O-H键有较大极性,有断裂的可能,即氢可以解离,表现出一定的酸性。醇可以与活泼金属反应。醇与金属钠反应可以放出氢气,得到醇钠。醇的酸性比水弱,反应比水慢。这是因为,醇可以看作是水分子中的一个氢被羟基取代的产物,由于烷基的推电子能力比氢大,氧氢之间电子云密度大,同水相比,O-H键难于断裂。当与羟基相连的烷

26、基增大时,烷基的推电子能力增强,氧氢之间电子云密度更大,氧氢键更难于断裂;同时烷基的增大,空间位阻增大,使得解离后的烷氧基负离子难于溶剂化。因此各种醇的酸性次序如下:伯醇仲醇叔醇。醇的酸性比水的还小,所以醇钠放入水中,立即水解为醇。一般情况下平衡向右,工业上用除去反应中生成水的方式,使平衡左移,制备醇钠。2)与氢卤酸的反应醇与氢卤酸反应生成卤代烃(制备卤代烃的重要方法):伯醇与氢卤酸的反应一般是SN2反应:叔醇与氢卤酸的反应一般是SN1反应:仲醇与氢卤酸的反应可能为SN1也可能为SN2反应。醇的反应活性:烯丙基 叔 仲 伯,伯醇的反应需加热()、仲醇需放置片刻反应才能进行,叔醇与氢卤酸的反应立

27、刻就能进行。这可以用于区别伯醇、仲醇、叔醇。3)脱水反应 醇与浓硫酸脱水可生成醚也可生成烯,主要看反应条件;醇与强酸一起加热,脱水变成烯烃;如果把温度控制在140左右,那么每两个乙醇分子间脱去一个水分子而生成乙醚。一般为该反应的历程可以是E1,也可以是E2。E1反应历程:碳正离子重排。E2反应历程:常见的脱水剂有:H 2SO4、H 3PO4、Al 2O3、AlCl 3。结构比较复杂的酸,其脱水反应(消除反应)也符合查依采夫规则:(4)氧化反应在分子中增加氧或减少氢的反应称为氧化反应,反之称为还原反应。醇分子中的-氢原子受羟基的影响,具有较大的活性,易被氧化 ,如被Cr 2O3, KMnO4,K

28、2Cr2O7等氧化。首先,-氢原子被氧化为羟基,生成不稳定的伯二醇,然后脱去一分子水生成醛或酮。醛比醇更易被氧化,生成后继续被氧化成羧酸。如:醛的沸点比同级的醇低得多,如果在反应中将生成的醛立即蒸馏出来,脱离反应体系,则不被继续氧化,可以得到较高产率的醛。叔醇不具有-H,在同样条件下不被氧化。实验室中,常用反应前后有颜色变化的氧化剂如KMnO4,K2Cr2O7等来鉴别伯醇或仲醇。7.3.2 酚羟基与苯环直接相连的化合物是酚。例如:多元酚称为二酚、三酚等。1). 酚的结构苯酚是最简单的酚,化学式是C 6H6O,结构式是:酚中氧为sp杂化,两个杂化轨道分别与碳和氢形成两个 键。剩余一个杂化轨道被一

29、对未共用电子对占据,还有一个也被一对未共用电子对占据的p轨道,此p轨道垂直于苯环并与环上的键发生侧面重叠,形成大的p-共轭体系,p-共轭体系中,氧起着给电子的共轭作用,氧上的电子云向苯环偏移,苯环上电子云密度增加,苯环的亲电活性增加,氧氢之间的电子云密度降低,增强了羟基上氢的解离能力。图:苯酚电子云分布常见的酚:一般酚为固体,少数烷基酚为高沸点的液体。如:苯酚的沸点为:181.8 。 酚能与水分子形成氢键,所以苯酚溶于热水,在冷水中100g水中可溶解9g。酚的分子间能形成氢键,有较高的沸点和熔点,其熔沸点大于相应的芳烃。 酚能溶于乙醇、乙醚及苯等有机溶剂,在水中的溶解度不大,但随着酚中羟基的增

30、多,水溶性增大。酚可以发生缔合,根据结构不同,可发生分子间缔合或分子内缔合,例:邻硝基苯酚可以发生分子内缔合,即形成分子内氢键;对硝基苯酚可以发生分子间缔合,即形成分子间氢键;邻硝基苯酚发生了分子内缔合,降低了分子间缔合的能力,其沸点比对硝基苯酚低,因此可用蒸馏的方法把二者分开。酚中羟基与苯环形成大的p共轭体系,由于氧的给电子共轭作用,与氧相连的碳原子上电子云密度增高,使得苯环上易发生亲电取代反应。2)酚的化学性质:()酚的酸性 苯酚和碱反应,生成易溶于水的苯酚钠:但苯酚酸性极弱,其pK a值为10.00,是一个比碳酸还要弱的酸,因此,在苯酚钠溶液中通入二氧化碳能析出苯酚:当苯环上有吸电子基时

31、,酚的酸性更强,该方法可用于酚的提纯分离。(2) 显色反应 苯酚跟FeCl 3溶液作用显示紫色。凡有 结构的化合物都有显色反应,可利用这一反应检验含烯醇式结构的化合物。(3)苯环上的取代反应 苯酚能跟卤素、硝酸、硫酸等发生苯环上的取代反应,例如:苯酚在水溶液中与溴立即生成2,4,4,6- 四溴-2,5-环己二烯酮的白色沉淀,后者用亚硫酸氢钠溶液洗涤,转变为2,4,6-三溴苯酚。这是鉴别酚的一个特征性反应。7.3.3 醚两个烃基通过氧原子连接起来的化合物叫做醚,烃基可以是烷基、烯基、芳基等。例如:CH 3OCH3 二甲醚(简称甲醚)C 2H5OC2H5 二乙醚(简称乙醚)CH 3OC2H5(甲乙

32、醚)醚中的氧为sp杂化,其中两个杂化轨道分别与两个碳形成两个键,余下两个杂化轨道各被一对孤电子对占据,苯乙醚 二苯醚醚分子间不能形成氢键,因此沸点较低。氧原子上有未共用电子对,可以作为氢键受体与水分子形成氢键,因此甲醚溶于水,乙醚在100克水中的溶解度为10克(25),高级醚不溶于水 。7.4 醛和酮醛和酮分子里都含有羰基( ),统称为羰基化合物,羰基所连接的两个都是烃基的叫做酮,为通式为 (或RCOR)。其中至少有一个是氢原子的叫做醛(aldehyde),通式为 (RCHO)。我们通常把 叫做羰基; 叫做醛基。常见的醛酮:苯乙酮(甲基苯乙酮) 2-丁酮醛和酮互为官能团异构,同时本身也存在碳链

33、异构。1 醛酮的结构羰基是醛、酮的官能团。羰基碳原子为sp杂化,其三个 键共平面,键角接近120 。羰基碳原子和氧原子上的p轨道在侧面互相重叠生成键,氧原子上还有两对未共用电子对。羰基的结构由于氧原子的电负性比碳大,氧原子周围的电子云密度比碳原子周围的电子云密度大,所以羰基是一个极性官能团。羰基的极性2 醛酮的化学性质(1)氢氰酸的加成醛或酮与氢氰酸作用,得到-羟基腈(氰醇)。由于氢氰酸毒性较大且易挥发,实际工作中一般先将氰化钠或氰化钾的水溶液与醛酮混合,再滴加硫酸或盐酸,使生成的HCN立即与醛、酮反应。例如:-羟基腈经水解可制备-羟基酸,后者可进一步失水变成, 不饱和酸。例如丙酮与氢氰酸的加

34、成产物用盐酸水解可得到-羟基酸。若用浓硫酸水解同时脱水可得到不饱和酸。反应活性:(2)氢的反应氢原子由于受羰基吸电子的影响,酸性有所增加。例:乙烷中CH键的pKa 约为 40,丙酮或乙醛中的CH键的pKa 值约为1920,因此,醛、酮分子中的氢表现了与其它碳原子上氢不同的活性。a. 羟醛缩合 在稀碱溶液中,两分子有-氢的醛互相结合生成-羟基醛的反应称为羟醛缩合,例如:羟基醛在加热情况下很容易脱水生成,不饱和醛:b. 卤代及碘仿反应醛、酮分子中的氢原子在酸性或中性条件下容易被卤素取代,生成卤代物。例如:卤代酮是一类崔泪性很强的化合物。卤代反应也可被碱催化,畲呋 穆贝 从 苣淹粼谝辉 锥巍绻?/S

35、PAN碳为甲基,例如乙醛或甲基酮( ),则三个氢都可被卤代。这是由于H被卤素取代后,卤原子强的吸电子诱导效应,使第二个或第三个H更活泼,更容易被取代。例如:生成的1,1,1三卤代丙酮,由于羰基氧和三个卤原子的吸电子作用,使碳碳键()不牢固,在碱的作用下发生断裂,生成卤仿和相应的羧酸盐。生成的产物中有卤仿,故称卤仿反应。当卤素是碘时,称为碘仿反应。碘仿(CHI3 )是黄色沉淀,所以利用碘仿反应不仅可以鉴别 类型的羰基化合物,还可以鉴别 类型的醇。(3)醛的氧化醛易被Ag 2O、H 2O2、KMnO 4、CrO 3、Ag(NH 3)2OH、Cu 2+氧化。a. 银镜反应将醛和土伦试剂(硝酸银的氨水

36、溶液)共热,醛氧化成相应的酸,银离子被还原成金属银,沉淀在试管上形成银镜,此方法可用于区别醛酮。CH3CHO2Ag(NH 3)2OHCH 3COONH4+2Ag+3NH 3H 2Ob. 用高锰酸钾或重铬酸钾氧化c. Fehling试剂:(弱)硫酸钠、氢氧化钠和酒石酸钠钾的混合物。(深兰色) 医院用此方法检查糖尿病(葡萄糖),Cu 2+蓝色消失。Tollens试剂和Fehling 试剂只氧化醛基,不影响双键。(芳醛不与 Fehling试剂作用。)7.5 羧酸烃分子中的氢原子被羧基( )取代而生成的化合物叫做 羧酸。其官能团为羧基,通式为RCOOH(R 为烃基或H)。 羧酸的分类:羧酸的命名是选择

37、分子中含羧基的最长碳链为主链,根据主链上碳原子的数目称为某酸。编号是从羧基开始的,芳环可作为取代基。例如:3-甲基丁酸 , C 6H5CH2CH2CH2COOH 4-苯基丁酸乙二酸 (草酸) (2)- 丁烯二酸 2- 甲基-3-乙基丁二酸1. 羧酸的结构在羧酸分子中羧基碳原子处于sp杂化态,它分别同碳原子和两个氧原子形成了三个同平面的键,为参与杂化的p轨道与一个氧原子的p轨道交盖形成C=O双键中的 键。在羧基中,羟基上的氧还有一孤对电子,它与C=O键中的 键交盖形成p共轭体系,产生的p共轭效应使C=O双键上碳原子的电子云密度增高,难以接受亲核试剂的进攻,C=O也就难以起醛、酮那样的亲核加成反应

38、。羧基的结构2 羧酸的性质饱和一元脂肪酸同系列中,甲酸、乙酸、丙酸是具有强烈刺激性酸味的液体,可溶于水。含有49个碳原子的羧酸具有腐败恶臭味,它们在室温下都是液体,在水中的溶解度,随碳链的增长而减少,癸酸以上则不溶于水。高级脂肪酸是蜡状固体、无味;脂肪二元羧酸和芳香羧酸是晶状固体。(1) 酸性乙酸具有明显的酸性,在水溶液里能电离出氢离子:乙酸是一种弱酸,电离常数K a=1.7510-5,比碳酸的酸性强,故可与碳酸盐反应。(2) 酯化反应乙酸与乙醇在酸性催化剂存在下生成乙酸乙酯:一般用硫酸、氯化氢或对甲苯磺酸作催化剂。如不加催化剂,反应速度很慢,但升高温度能加速反应的进行。酸跟醇反应,生成酯和水

39、的反应叫做酯化反应。酯化反应是可逆反应,在达成平衡时,只有部分乙酸转化成酯。(3)酸酐的生成羧酸在脱水剂乙酸酐或五氧化二磷作用下,两分子羧酸之间失去一分子水生成酸酐:7.6芳香烃和杂环化合物7.6.1 芳香烃在有机化学中把一些从天然产物中得到的有香气的化合物通称为芳香化合物。这些化合物的性质与早期研究的脂肪族化合物有显著差异,因此把它们叫做芳香族化合物。芳香族化合物分为:单环、多环和稠环化合物,例如:甲基苯 三苯基甲烷 蒽1 芳香烃的结构最简单的芳香烃是苯,其化学式为C 6H6,苯具有高度的不饱和性。1865年德国化学家凯库勒提出了苯环的结构式:简写为 苯分子中六个碳原子和六个氢原子均处于同一

40、平面上,苯的六个边都是相等的。碳碳之间的键长都是0.139nm。(CC键长为0.154nm,C=C键长为 0.134nm)这说明苯分子中没有单键和双键的交替,而是处于单键和双键之间的六个相同的碳碳键。杂化理论认为,苯分子中每个碳原子都是以sp杂化轨道参与成键的(一个CH和两个CC的键)这三个键之间互成120的键角,并且六个C ,六个H都处于同一平面上。此外,每个碳原子还剩下一个轨道与苯环所在的平面垂直,六个p轨道之间从侧面相互重叠,形成一个大键。大 键的电子云平均分布于六个碳原子之间,使整个苯分子成为一个闭合的共轭体系,分子能量大大降低。因此,苯环具有高度的稳定性。2 苯及其同系物的性质由于苯

41、的结构和特殊性,所以苯的化学性质具有易于发生取代反应而难于发生加成反应的特性。(1) 取代反应a. 卤化反应 苯与氯、溴在一般情况下不发生取代反应,但在铁盐等的催化作用下加热,苯环上的氢原子可被氯原子或溴原子取代,生成相应的卤代苯,并放出卤化氢。反应活性:F 2Cl2Br2I2b. 硝化反应 用浓硝酸和浓硫酸(称混酸)与苯共热,苯环上的氢原子能被硝基(-NO2)取代,生成硝基苯。如果增加硝酸的浓度,并提高反应温度,则可得间二硝基苯。如果用甲苯进行硝化就比苯容易得多, 如果继续硝化,并提高反应温度,可得:三硝基甲苯,也叫做2,4,6-三硝基甲苯,俗称 “TNT”,是一种烈性的无烟炸药。c. 磺化

42、反应 苯和浓硫酸共热,苯环上的氢可被磺酸基(SO 3H)取代,产物是苯磺酸。(2) 氧化反应具有氢的烷基苯可以被高锰酸钾、重铬酸钠、硝酸等强氧化剂氧化,也可以被空气中的氧催化氧化,并且不论烃基碳链的长短,都被氧化成苯甲酸。例如:这些反应也说明苯环是相当稳定的。只有在剧烈的特殊条件下,苯环才会破裂。3 苯环上取代反应的定位规则苯环上有取代基后,由于取代基电性的不同,引入第二取代基的位置就不是任意的。如一元取代苯 进一步发生取代反应,第二个取代基可以有五个位置,两个邻位,两个间位和一个对位。苯环亲电取代反应的定位规则:a.苯环上新取代基占的位置,主要决定于原有取代基(定位基)的性质b.定位基分两类:邻位定位基和间位定位基当定位基为邻位定位基时,新引入的基团进入它的邻位和对位;当定位基为间位定位基时,新引入的基团进入它的间位。常见的定位基: 常见邻位定位基和间位定位基邻位定位基 间位定位基, , , , , , ,苯环亲电取代反应在有机合成中具有重要意义,通过这些反应可以在苯环上引入各种基团。在合成实践中人们经常利用亲电取代反应的定位规则,来推测反应的主要产物是什么。应用定位规则可以选择、确定合理的合成路线。例如,以苯为原料制取硝基溴苯,显然要

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报