1、2018/5/10,1,Super Absorbent Polymer,超强吸水高分子材料,2018/5/10,2,超强吸水高分子材料综述,一、吸 水 原 理,二、分类,三、基本结构,四、SAP结构,五、合成高吸水分子中一些重要术语,六、接枝共聚反应实例,七、高吸水性树脂的基本特性及影响因素,2018/5/10,超强吸水高分子材料(Super Absorbent Polymer简称SAP)也称为高吸水性树脂、超强吸水剂、高吸水性聚合物,是一种具有优异吸水能力和保水能力的新型功能高分子材料。,超强吸水高分子材料综述,2018/5/10,既然安上super这个头衔,那我们就要看看它们和传统吸水材料
2、的区别何在了_,V.S,普通吸水材料,SAP,超强吸水高分子材料综述,2018/5/10,纸、棉花和海绵以及后来的泡沫塑料等。吸水能力通常很低,所吸水量最多仅为自身重量的20倍左右,一旦受到外力作用,则很容易脱水,保水性很差。,超强吸水高分子材料综述,普通吸水材料,2018/5/10,60年代末期,美国首先开发成功高吸水性树脂。这是一种含有强亲水性基团并通常具有一定交联度的高分子材料;它不溶于水和有机溶剂,吸水能力可达自身重量的5002000倍,最高可达5000倍;吸水后立即溶胀为水凝胶,有优良的保水性,即使受压也不易挤出;吸收了水的树脂干燥后,吸水能力仍可恢复。,超强吸水高分子材料综述,普通
3、吸水材料,2018/5/10,吸水能力高:可达自身重量的几百倍至几千倍。,SAP优点,吸水前,吸水后,超强吸水高分子材料综述,2018/5/10,SAP优点,保水能力高:即使受压也不易失水,观看保水能力演示,超强吸水高分子材料综述,2018/5/10,既然有如此多的优点,那么是否也有一样多的用途呢?,?,超强吸水高分子材料综述,2018/5/10,日常生活:吸水性抹布、插花材料、婴儿一次性尿布、宇航员尿巾、妇女卫生用品、餐巾、手帕、绷带、脱脂棉等农用保水剂、土壤改良剂用作医疗卫生材料:外用药膏的基材、缓释性药剂、抗血栓材料工业吸水剂:堵水剂、脱水剂食品工业 包装材料、保鲜材料、脱水剂、食品增量
4、剂等,用途,超强吸水高分子材料综述,2018/5/10,SAP的用途广泛:,女性卫生用品,医用吸水胶布,用途,超强吸水高分子材料综述,2018/5/10,用途,植物养护泥,各式吸潮剂,超强吸水高分子材料综述,2018/5/10,高吸水性树脂是一类高分子电解质。水中盐类物质的存在会显著影响树脂的吸水能力,在一定程度上限制了它的应用。提高高吸水性树脂对含盐液体(如尿液,血液、肥料水等)的吸收能力,将是今后高吸水性树脂研究工作中的一个重要课题。对高吸水性树脂吸水机理的理论研究工作也将进一步开展,以指导这一类功能高分子材料向更高水平发展。,用途,超强吸水高分子材料综述,SAP是怎样吸水的?,?,从化学
5、组成和分子结构看,高吸水性树脂是分子中含有亲水性基团和疏水性基团的交联型高分子。从直观上理解,当亲水性基团与水分子接触时,会相互作用形成各种水合状态。,一、吸 水 原 理,1.吸 水 实 质,化学吸附,物理吸附,棉花、纸张、海绵等。,毛细管的吸附原理。有压力时水会流出。,通过化学键的方式把水和亲水性物质结合在一起成为一个整体。加压也不能把水放出。,水分子与亲水性基团中的金属离子形成配位水合,与电负性很强的氧原子形成氢键等。高分子网状结构中的疏水基团因疏水作用而易于斥向网格内侧,形成局部不溶性的微粒状结构,使进入网格的水分子由于极性作用而局部冻结,失去活动性,形成“伪冰”(False ice)结
6、构。亲水性基团和疏水性基团的这些作用,显然都为高吸水性树脂的吸水性能作了贡献。,实验证明,由于亲水性水合作用而吸附在高吸水性树脂中亲水基团周围的水分子层厚度约为5101061010 m,相当于 23个水分子的厚度。第一层水分子是由亲水性基团与水分子形成了配位键或氢键的水合水第二、三层则是水分子与水合水形成的氢键结合层。再往外,亲水性基团对水分子的作用力已很微弱,水分子不再受到束缚。,按这种结构计算,每克高吸水性树脂所吸收的水合水的重量约为68 g,加上疏水性基团所冻结的水分子,也不过15 g左右。这个数字,与高吸水性树脂的吸水量相比,相差12个数量级,而与棉花、海绵等的吸水量相当。显然,还有更
7、重要的结构因素在影响着树脂的吸水能力。,研究发现,高吸水性树脂中的网状结构对吸水性有很大的影响:未经交联的树脂基本上没有吸水功能。而少量交联后,吸水率则会成百上千倍地增加。但随着交联密度的增加,吸水率反而下降。图1为交联剂聚乙二醇双丙烯酸盐(PAGDA)对聚丙烯酸钠系高吸水性树脂吸水能力的影响。,图1 交联剂用量对吸水能力的影响,由图中可见:当交联剂用量从0.02 g增至0.4 g时,聚合物的吸水能力下降60以上。从淀粉与丙烯腈接枝共聚所得共聚物的吸水能力变化来看,随聚丙烯腈用量和平均分子量的增大,吸水量也随之增加(见图2)。这些例子都证明,适当增大网状结构,有利于吸水能力的提高。,图2 AN
8、含量对吸水能力的影响,第七章 高吸水性树脂,由此可见,被高吸水性树脂吸收的水主要是被束缚在高分子的网状结构内。据测定,当网格的有效链长为109108m时,树脂具有最大的吸水性。网格太小,水分子不易渗入,网格太大,则不具备保水性。树脂中亲水性基团的存在也是必不可少的条件,亲水性基团吸附水分子,并促使水分子向网状结构内部的渗透。,在普通水中,水分子是以氢键形式互相连结在一起的,运动受到一定限制。在亲水性基团作用下,水分子易于摆脱氢键的作用而成为自由水分子,这就为网格的扩张和向网格内部的渗透创造了条件。,水分子进入高分子网格后,由于网格的弹性束缚,水分子的热运动受到限制,不易重新从网格中逸出,因此,
9、具有良好的保水性。差热分析结果表明,吸水后的树脂在受热至100 时,失水仅10左右;受热至150时,失水不超过50,可见其保水性之优良(见表1)。,表1 丙烯腈接枝淀粉的热失水率,高吸水性树脂吸收水后发生溶胀,形成凝胶。在溶胀过程中,一方面,水分子力图渗入网格内使其体积膨胀,另一方面,由于交联高分子体积膨胀导致网格向三维空间扩展,使网键受到应力而产生弹性收缩,阻止水分子的进一步渗入。当这两种相反的作用相互抵消时,溶胀达到了平衡,吸水量达到最大。,阶段2,吸水树脂的离子型网络,2.SAP的吸水原理,网络内外产生渗透压,水份进一步渗入.,阶段1,较慢。通过毛细管吸附和分散作用吸水。,水分子通过氢键
10、与树脂的亲水基团作用,亲水基团离解, 离子之间的静电排斥力使树脂的网络扩张。,交联点,(内),(外),随着吸水量的增大,网络内外的渗透压差趋向于零;而网络扩张的同时,其弹性收缩力也在增加,逐渐抵消阴离子的静电排斥,最终达到吸水平衡。,阶段3,吸水剂微球吸水过程的体积变化示意图,SAP有哪些种类?,?,二、分 类,表2 高吸水性树脂分类,高吸水性树脂是高分子电介质,对含有离子的液体吸收能力显著下降,因此,产品的净化程度对吸水率影响很大。通常采用渗析、醇沉淀、漂洗净化,再用碱中和处理。产品的最终形式随净化和干燥的方式而异。醇沉淀及鼓风干燥的一般为粒状产品;渗析和酸沉淀及转鼓干燥的一般制成膜,也可加
11、工为粒状;若用冷冻干燥,则可制得海绵状产品。这些形式都有各自的独特用途。,纯合成高分子,天然高分子加工产物,制造SAP的原料是怎样的?,?,(1)聚丙烯酸盐类目前生产最多的一类合成高吸水性树脂,由丙烯酸或其盐类与具有二官能度的单体共聚而成。制备方法有溶液聚合后干燥粉碎和悬浮聚合两种。吸水倍率较高,一般均在千倍以上。,(2)聚丙烯腈水解物将聚丙烯腈用碱性化合物水解,再经交联剂交联,即得高吸水性树脂。如将废晴纶丝水解后用氢氧化钠交联的产物即为此类。由于氰基的水解不易彻底,产品中亲水基团含量较低,故吸水倍率不太高,一般在5001000倍左右。,(3)醋酸乙烯酯共聚物 将醋酸乙烯酯与丙烯酸甲酯进行共聚
12、,然后将产物用碱水解后得到乙烯醇与丙烯酸盐的共聚物,不加交联剂即可成为不溶于水的高吸水性树酯。在吸水后有较高的机械强度,适用范围较广。,(4)改性聚乙烯醇类 由聚乙烯醇与环状酸酐反应而成,不需外加交联剂即可成为不溶于水的产物。由日本可乐丽公司首先开发成功, 吸水倍率为150400倍,虽吸水能力较低,但初期吸水速度较快,耐热性和保水性都较好,故是一类适用面较广的高吸水性树脂。,淀粉系超高吸水高分子材料,直链淀粉,支链淀粉,淀粉结构,超强吸水剂的研究起源于淀粉系,淀粉类高吸水性树脂主要有两种形式:一种是淀粉与丙烯腈进行接枝反应后,用碱性化合物水解引入亲水性基团的产物,由美国农业部北方研究中心于19
13、66年开发成功,并投入生产;另一类是淀粉与亲水性单体(如丙烯酸、丙烯酰胺等)接枝聚合,然后用交联剂交联的产物,是由日本三洋化成公司首开先河的。80年代我国开始了对淀粉系高吸水性树脂的研究。,淀粉改性的高吸水性树脂的优点:原料来源丰富,产品吸水倍率较高,通常都在千倍以上。缺点是吸水后凝胶强度低,长期保水性差,在使用中易受细菌等微生物分解而失去吸水、保水作用。,纤维素系超高吸水高分子材料,纤维素结构,纤维素改性高吸水性树脂的两种形式,一种是纤维素与一氯醋酸反应引入羧甲基后用交联剂交联而成的产物;另一种是由纤维素与亲水性单体接枝共聚产物。 纤维素改性高吸水性树脂的吸水倍率较低,同时亦存在易受细菌的分
14、解失去吸水、保水能力的缺点。,与淀粉类高吸水性树脂相比,纤维素类的吸水能力比较低,一般为自身重量的几百倍,但是作为纤维素形态的吸水性树脂在一些特殊形式的用途方面,淀粉类往往无法取代。例如,与合成纤维混纺制作高吸水性织物,以改善合成纤维的吸水性能。这方面的应用显然非纤维素类莫属。,SAP的结构怎样?,?,四、SAP结构,高吸水性树脂的结构特征:,a.分子中具有强亲水性基团,如羟基、羧基,能够与水分子形成氢键;b.树脂具有交联结构;c.聚合物内部具有较高的离子浓度;d.聚合物具有较高的分子量,主链或侧链上含有亲水性基团,如 -3、 -、 -2、 -等 吸水能力:-3-2-,低交联度的三维网络。网络
15、的骨架可以是淀粉、纤维素等天然高分子,也可以是合成树脂(如聚丙烯酸类)。,从化学结构看:,从物理结构看:,从微观结构看:,因其合成体系不同而呈现多样性:,淀粉接枝丙烯酸呈海岛型结构,纤维素接枝丙烯酰胺呈峰窝型结构.,部分水解的聚丙烯酞胺树脂则呈粒状结构,淀粉聚丙烯酸钠接枝聚合物模型图,微观结构,多孔网状结构,什么是是引发剂、交联剂?,?,四、合成高吸水分子中一些重要术语,接枝共聚反应的详细过程是怎样的?,?,纤维素接枝共聚反应过程,纤维素接枝共聚反应过程,糊化,离心中和,粉碎,淀粉与丙稀腈制造实例,调PH 干燥,制造SAP的新方法微波法,高效节能,无环境污染加热速度快、均匀、有选择性、无滞后效
16、应,纸浆纤维,单体丙烯酸,SAP的特性怎样?,?,高吸水性树脂的基本特性 高吸水性 加压保水性吸氨性增稠性,1 高吸水性,作为高吸水性树脂,高的吸水能力是其最重要的特征之一。从目前已经研制成功的高吸水性树脂来看,吸水率均在自身重量的50012000倍左右,最高可达4000倍以上,是纸和棉花等材料吸水能力的100倍左右。,考察和表征高吸水性树脂吸水性的指标通常有两个: 吸水率 吸水速度,1.1 吸水率,吸水率是表征树脂吸水性的最常用指标。物理意义为每克树脂吸收的水的重量。单位为g水/g树脂。影响树脂吸水率有很多因素,除了产品本身的化学组成之外,还与产品的交联度、水解度和被吸液体的性质等有关。,高
17、吸水性树脂在未经交联前,一般是水溶性的,不具备吸水性或吸水性很低,因此通常需要进行交联。实验表明,交联密度过高对吸水性并无好处。交联密度过高,一方面,网格太小而影响水分子的渗透,另一方面,橡胶弹性的作用增大,也不利于水分子向网格内的渗透,因此造成吸水能力的降低。,(1)交联度对吸水性的影响,高吸水性树脂的吸水率一般随水解度的增加而增加。当水解度高于一定数值后,吸水率反而下降。这是因为随着水解度的增加,亲水性基团的数目固然增加,但交联剂部分也将发生水解而断裂,使树脂的网格受到破坏,从而影响吸水性。,(2)水解度对吸水率的影响,高吸水性树脂是高分子电解质,水中盐类物质的存在和pH值的变化都会显著影
18、响树脂的吸水能力酸、碱、盐的存在,一方面影响亲水的羧酸盐基团的解离,另方面由于盐效应而使原来在水中应扩张的网格收缩,与水分子的亲和力降低,因此吸水率降低。,(3)被吸液的pH值与盐分对吸水率的影响,在树脂的化学组成、交联度等因素都确定之后。高吸水性树脂的吸水速度主要受其形所影响。一般来说,树脂的表面积越大,吸水速度也越快。所以,薄膜状树脂的吸水速度通常较快,而与水接触后易聚集成团的粉末状树脂的吸水速度相对较慢。,4.1.2 吸水速率,与纸张、棉花、海绵等吸水材料相比,高吸水性树脂的吸水速率较慢,一般在1分种至数分钟内吸水量达到最大。,树脂形状对吸水速率的影响,纸张、棉花和海绵等材料:物理吸水作
19、用高吸水性树脂的吸水能力是由化学作用和物理作用共同贡献的。即利用分子中大量的羧基、羟基和酰氧基团与水分子之间的强烈范得华力吸收水分子,并由网状结构的橡胶弹性作用将水分子牢固地束缚在网格中。一旦吸足水后,即形成溶胀的凝胶体。这种凝胶体的保水能力很强,即使在加压下也不易挤出来。,2 加压保水性,例如,将300 g砂子与0.3 g(0.1)高吸水性树脂混合,加入100 g水,置于20、相对湿度60的环境下,大约30天后,水才蒸发干,而如果不加高吸水性树脂,则在同样条件下,只需7天,水分就完全蒸发。,高吸水性树脂与棉花保水性比较,高吸水性树脂一般为含羧酸基的阴离子高分子,为提高吸水能力,必须进行皂化,
20、使大部分羧酸基团转变为羧酸盐基团。但通常树脂的水解度仅70左右,另有30左右的羧酸基团保留下来,使树脂呈现一定的弱酸性。这种弱酸性使得它们对氨那样的碱性物质有强烈的吸收作用。,4.3 吸氨性,高吸水性树脂的这种吸氨性,特别有利于尿布、卫生用品和公共厕所等场合的除臭尿液含有尿素酶。在尿素酶的作用下,尿液中的尿素逐渐分解成氨。高吸水性树脂不仅能吸收氨,使尿液呈中性,同时还有抑制尿素酶的分解作用的功能,从而防止了异味的产生。,吸水性材料吸氨能力的比较,聚氧乙烯、羧甲基纤维素、聚丙烯酸钠等均可作为水性体系的增稠剂使用。高吸水性树脂吸水后体积可迅速膨胀至原来的几百倍到几千倍,因此增稠效果远远高于上述增稠剂。0.4(wt)的高吸水性树脂,能使水的粘度增大约1万倍,普通的增稠剂,加入0.4,水的粘度几乎不变。需要加入2以上才达到这么高的粘度。,4.4 增稠性,高吸水性树脂的增稠作用在体系的pH值为510 时表现得尤为突出。例如,含淀粉类高吸水性树脂 HSPAN 0.1的水,粘度为 1900 mPas,而在其中加入8氯化钾,粘度上升至5000 mPas。经高吸水性树脂增稠的体系,通常表现出明显的触变性。即体系的粘度在受到剪切力后随时间迅速下降,而剪切停止后,粘度又可恢复。,HPMA增稠体系的触变性,