1、实验中涉及到的并行计算,李连盟 李佳骏,MJPEG解码程序子任务:,1.FETCH:负责完成解码流程中的霍夫曼解码、反锯齿扫描及反量化。 2.COMPUTE:最为费时的计算任务反离散余弦变换(IDCT)。 3.DISPATCH:从不同的COMPUTE任务计算完毕的宏块,进行重新组织排列,最终生存图像帧并传送到帧缓存。,进行并行化!在headers/mjpeg.h中用NB_IDCT定义了线程数。在source/main.c中用Posix pthread多线程编程进行并行化。,Posix pthread简介:,1.数据类型pthread_t:线程句柄pthread_attr_t:线程属性句柄 2.
2、函数int pthread_create(pthread_t*restrict_tidp,const pthread_attr_t*restrict_attr,void*(*start_rtn)(void*),void *restrict arg);/创建线程。参数:1.线程标识符指针2.线程属性3.运行函数起始地址4.运行函数参数int pthread_join(pthread_t thread, void*retval);/以阻塞的方式等待thread指定的线程结束。参数:1.线程标识符2.返回值int pthread_attr_init(pthread_attr_t *attr);/初始
3、化线程对象的属性。,程序分析:,1.标识符定义pthread_t fetchThread, dispatchThread, idctThreadNB_IDCT;pthread_attr_t fetchAttr, dispatchAttr; 2.数据分配Channel * channel2 * NB_IDCT + 1;Channel * fetch_channel1 + NB_IDCT;Channel * dispatch_channel1 + NB_IDCT;Channel * idct_channelNB_IDCT2; /Channel是实现通信的容器 可以连接两个以上的模块fetch_ch
4、annel0 = channel0;dispatch_channel0 = channel0;for (uint32_t i = 0; i NB_IDCT; i+) fetch_channeli + 1 = channel2 * i + 1;dispatch_channeli + 1 = channel2 * i + 2;idct_channeli0 = channel2 * i + 1;idct_channeli1 = channel2 * i + 2;,fetch_channeli + 1 = channel2 * i + 1;dispatch_channeli + 1 = channel
5、2 * i + 2;idct_channeli0 = channel2 * i + 1;idct_channeli1 = channel2 * i + 2; 3.多线程pthread_create (,几个要点:,1.Channel是实现通信的容器,可以连接两个以上的模块。在这个程序中,Channel用于放置几个不同子程序间数据交互的空间,其中定义的channel、fetch_channel、dispatch_channel、idct_channel都是指针,指向他们所对应的那块实际的物理地址。 2.通过赋值,channel上的奇数块共享给了fetch和idct二维数组参数里的0号位(图中的红
6、色块),channel上的偶数块共享给了dispatch和idct二维数组参数里的1号位(同种的蓝色块)。 3.整个并行的过程是这样的:主线程创建一个子线程fetchThread运行fetch处理程序,参数是fetch_channel,即把fetch的处理结果分块后放到fetch_channel(红)上;创建N个子线程idctThread,并行运行idct计算程序,参数是idct_channeli,即第i个子线程运行idct程序,从dict_channeli0(红)上取出fetch的某块运行结果,然后将自己处理后的结果放到dict_channeli1(蓝)上;创建子线程dispatchThre
7、ad运行dispatch程序,参数为dispatch_channel,即从disptch_channel(蓝)上取出idct的结果,重新组合后,等待diptch运行结束后得出最后结果进行输出。 4.程序中进行的初始数据分配与原始数据无关,而是分配fetch程序运行得到的结果。分多少块,每块多大是由数据大小和线程数来决定的。放在channel上的数据全部是与程序间的通信有关的,只有fetch的结果和idct的结果,原始数据进入fetch串行运行,与其他程序无关。在程序操作channel之前,channel是格式化了的。,性能分析:,多MIPS与运行时间的关系(MIPS数等于线程数),性能分析:,
8、同数量MIPS下,线程数与运行时间的关系,性能分析说明:,1.从第一张图表中线程数与核数相同,可以很明显看出,并行计算对于计算性能有很好的提升作用。核数达到三个以后,并行的效果达到了极限。线程数与核数相同保证了最好的并行效果,防止了线程数过多造成的伪并行。2.单纯从并行计算的角度来看,第二张图更能体现并行计算的效果。在相同的核数条件下,开不同的线程数对计算性能的提升作用。图中没有展示各核数下1个线程的计算时间,串行进行基本上需要2个线程并行计算大约两倍的时间。3.为了与我们之前的测试数据保存一致,我们没有对timer进行修改。图中的数据除以200就可以得到与其他组相当的测试数据。,Thanks!,