1、- 1 -高一数学必修 1 知识网络集合2341 2nxABABn( ) 元 素 与 集 合 的 关 系 : 属 于 ( ) 和 不 属 于 ( )( ) 集 合 中 元 素 的 特 性 : 确 定 性 、 互 异 性 、 无 序 性集 合 与 元 素 ( ) 集 合 的 分 类 : 按 集 合 中 元 素 的 个 数 多 少 分 为 : 有 限 集 、 无 限 集 、 空 集( ) 集 合 的 表 示 方 法 : 列 举 法 、 描 述 法 ( 自 然 语 言 描 述 、 特 征 性 质 描 述 ) 、 图 示 法 、 区 间 法子 集 : 若 , 则 , 即 是 的 子 集 。、 若 集
2、合 中 有 个 元 素 , 则 集 合 的 子 集 有 个 , 注关 系集 合 集 合 与 集 合 0 (2-1)23, ,.4/ nCCAABxBBAxA 真 子 集 有 个 。、 任 何 一 个 集 合 是 它 本 身 的 子 集 , 即 、 对 于 集 合 如 果 , 且 那 么、 空 集 是 任 何 集 合 的 ( 真 ) 子 集 。真 子 集 : 若 且 ( 即 至 少 存 在 但 ) , 则 是 的 真 子 集 。集 合 相 等 : 且 定 义 : 且交 集 性 质 : , , ,运 算 ,/()()()-()/ ()()UUUUUABBBCardABardCardxAACAC ,
3、定 义 : 或并 集 性 质 : , , , , , 定 义 : 且补 集 性 质 : , , , , ()()- 2 -函数 ,AB Axy fBBxyxfy yxy映 射 定 义 : 设 , 是 两 个 非 空 的 集 合 , 如 果 按 某 一 个 确 定 的 对 应 关 系 , 使 对 于 集 合 中 的 任 意 一 个 元 素 , 在 集 合 中 都 有 唯 一 确 定 的 元 素 与 之 对 应 , 那 么 就 称 对 应 : 为 从 集 合 到 集 合 的 一 个 映 射传 统 定 义 : 如 果 在 某 变 化 中 有 两 个 变 量 并 且 对 于 在 某 个 范 围 内 的
4、 每 一 个 确 定 的 值 ,定 义 按 照 某 个 对 应 关 系 都 有 唯 一 确 定 的 值 和 它 对 应 。 那 么 就 是 的 函 数 。 记 作函 数 及 其 表 示函 数 ()., ,()()(), ,1212()() , ,fxabaxbfxfxfxababff ab近 代 定 义 : 函 数 是 从 一 个 数 集 到 另 一 个 数 集 的 映 射 。定 义 域函 数 的 三 要 素 值 域 对 应 法 则解 析 法函 数 的 表 示 方 法 列 表 法图 象 法单 调 性函 数 的 基 本 性 质 传 统 定 义 : 在 区 间 上 , 若 如 , 则 在 上 递
5、增 是 递 增 区 间 ; 如 , 则 在 上 递 减 是 的 递 减 区 间 。导 数 定 义 : 在 区 间 () 1 ()2 () ()00, 0() ()0() ,yfxI MxIfxMxIfxMyff abfxfabab 最 大 值 : 设 函 数 的 定 义 域 为 , 如 果 存 在 实 数 满 足 : ( ) 对 于 任 意 的 , 都 有 ; ( ) 存 在 , 使 得 。 则 称 是 函 数 的 最 大 值最 值 最 上 , 若 , 则 在 上 递 增 ,是 递 增 区 间 ; 如 则 在 上 递 减 是 的 递 减 区 间 。 () ()() ()(1)()(), ()2
6、f I N IfNIfNfxfxfxDfx 小 值 : 设 函 数 的 定 义 域 为 , 如 果 存 在 实 数 满 足 : ( ) 对 于 任 意 的 , 都 有 ; ( ) 存 在 , 使 得 。 则 称 是 函 数 的 最 小 值定 义 域 , 则 叫 做 奇 函 数 , 其 图 象 关 于 原 点 对 称 。奇 偶 性 定 义 域 , 则 叫 做 偶 函 数 , 其 图() ()()0)()()1 , ()12 yfx fxTfxTfx TTfxyxaxyfxaa 象 关 于 轴 对 称 。 奇 偶 函 数 的 定 义 域 关 于 原 点 对 称周 期 性 : 在 函 数 的 定 义
7、 域 上 恒 有 的 常 数 则 叫 做 周 期 函 数 , 为 周 期 ; 的 最 小 正 值 叫 做 的 最 小 正 周 期 , 简 称 周 期( ) 描 点 连 线 法 : 列 表 、 描 点 、 连 线向 左 平 移 个 单 位 :向 右 平 移 个平 移 变 换函 数 图 象 的 画 法 ( ) 变 换 法 , ()1 1011/ ()01)bxbbfyyxxwwwxwyfxyAA单 位 :向 上 平 移 个 单 位 :向 下 平 移 个 单 位 :横 坐 标 变 换 : 把 各 点 的 横 坐 标 缩 短 ( 当 时 ) 或 伸 长 ( 当 时 ) 到 原 来 的 倍 ( 纵 坐
8、标 不 变 ) , 即伸 缩 变 换 纵 坐 标 变 换 : 把 各 点 的 纵 坐 标 伸 长 ( 或 缩 短 ( 到/()122100(,) 2(2)0 001()12(0 022010 Ayyfxxxxy yfxyyyfxyxxy yfyyy 原 来 的 倍 ( 横 坐 标 不 变 ) , 即关 于 点 对 称 :关 于 直 线 对 称 :对 称 变 换 关 于 直 线 对 称 : )1()xfx 关 于 直 线 对 称 :附:一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于 1;5、三
9、角函数正切函数 中tanyx- 3 -;余切函数 中;6、如果函数是由实际意义确定的解析式,应依据()2xkZcotyx自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若 均为某区间上的增(减)函数,则 在这个区间上也为增(减)函(),fxg()fxg数2、若 为增(减)函数,
10、则 为减(增)函数()f ()fx3、若 与 的单调性相同,则 是增函数;若 与 的单调性不xg()yfg()fxg同,则 是减函数。()yf4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在 处有定义,则 ,如果一个函数 既是奇函数又0x(0)f()yfx是偶函数,则 (反之不成立)()f2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数 和 复合而成的函数,只要其中有一个
11、是偶函数,那么该复()yfu()gx合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数 的定义域关于原点对称,则 可以表示为()fx()fx,该式的特点是:右端为一个奇函数和一个11()()22f fx偶函数的和。- 4 -, ()0 ()(), ()()0,(), (,)()0,()0()yfxfxxyfxfab fafbyfx cabfccfxf 零 点 : 对 于 函 数 ( ) 我 们 把 使 的 实 数 叫 做 函 数 的 零 点 。定 理 : 如 果 函 数 在 区 间 上 的 图 象 是 连 续 不 断 的 一 条 曲 线 , 并 且 有零 点 与 根 的
12、关 系 那 么 , 函 数 在 区 间 内 有 零 点 。 即 存 在 使 得 这 个 也 是 方 程 的 根 。 ( 反 之 不 成 立 )关 系 : 方 程函 数 与 方 程函 数 的 应 用 () ()(1),()()0,(2)(,);(3)()()0,()(), (,)0()()0,yfxyfxxabfafbcfcf cfaf bcxabfcfba有 实 数 根 函 数 有 零 点 函 数 的 图 象 与 轴 有 交 点确 定 区 间 验 证 给 定 精 确 度 ;求 区 间 的 中 点计 算 ;二 分 法 求 方 程 的 近 似 解 若 则 就 是 函 数 的 零 点 ; 若 则 令
13、 ( 此 时 零 点 ) ; 若 则 令 ( 此 时 零 点 (,)(4) -, ();24cb ab ) ;判 断 是 否 达 到 精 确 度 : 即 若 则 得 到 零 点 的 近 似 值 或 否 则 重 复 。几 类 不 同 的 增 长 函 数 模 型函 数 模 型 及 其 应 用 用 已 知 函 数 模 型 解 决 问 题建 立 实 际 问 题 的 函 数 模 型 ,(0,)(),(1)1lo mnaanarsrsQababxyax 根 式 : 为 根 指 数 , 为 被 开 方 数分 数 指 数 幂指 数 的 运 算指 数 函 数 性 质定 义 : 一 般 地 把 函 数 且 叫 做
14、 指 数 函 数 。指 数 函 数 性 质 : 见 表对 数 :基 本 初 等 函 数 对 数 的 运 算对 数 函 数 g,()llog;l .oglog;(0,1,0,)l()1caNaMNnaMyxbcb为 底 数 , 为 真 数性 质 换 底 公 式 :定 义 : 一 般 地 把 函 数 且 叫 做 对 数 函 数对 数 函 数 性 质 : 见 表 且yx 幂 函 数 定 义 : 一 般 地 , 函 数 叫 做 幂 函 数 , 是 自 变 量 , 是 常 数 。性 质 : 见 表 2- 5 -表1 指数函数 0,1xya对数数函数 log0,1ayxa定义域R,值域 0,yyR图象过定
15、点 (0,1) 过定点 (1,0)减函数 增函数 减函数 增函数(,0)(,)xy时 ,时 , (,)(0,1)xy时 ,时 , (,)(,)xy时 ,时 , (,)(,0)xy时 ,时 ,性质 abababab- 6 -高中数学必修 2 知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0180(2)直线的斜率定义:倾斜角不是 90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 。斜率反映直线与轴的倾斜程度。tank当 时, ;
16、 当 时, ; 当 时, 不存在。90,18,90k90过两点的直线的斜率公式: )(212xxyk注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为 90;1(2)k 与 P1、P 2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式: 直线斜率 k,且过点)(11xky1,yx注意:当直线的斜率为 0时,k=0,直线的方程是 y=y1。当直线的斜率为 90时,直线的斜率不存在,它的方程不能用点斜式表示但因 l 上每一点的横坐标都等于 x1,所以它的方程是 x=x1。斜截式:
17、 ,直线斜率为 k,直线在 y 轴上的截距为 bbky两点式: ( )直线两点 ,1212212,1,x2,y截矩式: xab其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。l(0)ay(0)blxy,ab一般式: (A,B 不全为 0)CyA注意: 各式的适用范围 特殊的方程如: 1 2平行于 x 轴的直线: (b 为常数) ; 平行于 y 轴的直线: (a 为常数) ; (5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线 ( 是不全为 0 的常数)的直线系:00yx0,(C 为常数)0yBxA(二)过定点的直线系()斜率为 k 的直线系: ,
18、直线过定点 ;00xk0,yx()过两条直线 , 的交点的直线系方程为:11yxl :22CBAl( 为参数) ,其中直线 不在直线系中。2211yxl(6)两直线平行与垂直当 , 时,:bkl:bkl;212121,/1221l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点相交0:11CyBxAl 0:22CyBxAl- 7 -交点坐标即方程组 的一组解。02211CyBxA方程组无解 ; 方程组有无数解 与 重合/l1l2(8)两点间距离公式:设 是平面直角坐标系中的两个点,12(,),x, ( )则 2|()Bxy(9)点到直线距离公式:一点 到直线 的
19、距离0,P0:1CByAxl 20BACyxd(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程 ,圆心 ,半径为 r;22rbyaxba,(2)一般方程 0FED当 时,方程表示圆,此时圆心为 ,半径为042FED2,EDFED4212当 时,表示一个点; 当 时,方程不表示任何图形。042F(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r ;若利用一般方程,需要求出
20、D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线 ,圆 ,圆心 到 l 的距离为0:CByAxl 22:rbyaxbaC,,则有 ; ;2bad相 离与lrd相 切与ld相 交与rd(2)设直线 ,圆 ,先将方程联立消元,得到一个一:l 22:元二次方程之后,令其中的判别式为 ,则有; ;相 离与0相 切与l0相 交与l0注:如果圆心的位置在原点,可使用公式 去解直线与圆相切的问题,其中20ryx表示切点坐标,r 表示半径。,yx(3)过圆上一点的
21、切线方程:圆 x2+y2=r2,圆上一点为(x 0,y 0),则过此点的切线方程为 (课本命题)20ryx圆(x-a) 2+(y-b)2=r2,圆上一点为(x 0, y0),则过此点的切线方程为(x 0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广)4、圆与圆的位置关系:通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。设圆 ,2121:rbyaxC222: RbyaxC两圆的位置关系常通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。当 时两圆外离,此时有公切线四条;rRd当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当 时两圆相交,
22、连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;当 时,两圆内含; 当 时,为同心圆。r0d2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右) 、- 8 -俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与 x 轴平行的线段仍然与 x 平行且长度不变;原来与 y 轴平行的线段仍然与 y 平行,长
23、度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c 为底面周长,h 为高, 为斜高,l 为母线)hchS直 棱 柱 侧 面 积 rS2圆 柱 侧 21cS正 棱 锥 侧 面 积 rlS圆 锥 侧 面 积)(21正 棱 台 侧 面 积 lR)(圆 台 侧 面 积lr圆 柱 表 r圆 锥 表 22Rlr圆 台 表(3)柱体、锥体、台体的体积公式VSh柱 2Shr圆 柱 13VSh锥 hV231圆 锥1()3台 ()()r圆 台(4)球体的表面积和体积公式:V = ; S =球 34R球 面 24R4、空间点、直线、平面的位
24、置关系(1)平面 平面的概念: A.描述性说明; B.平面是无限伸展的; 平面的表示:通常用希腊字母 、 表示,如平面 (通常写在一个锐角内) ;也可以用两个相对顶点的字母来表示,如平面 BC。 点与平面的关系:点 A 在平面 内,记作 ;点 不在平面 内,记作AA点与直线的关系:点 A 的直线 l 上,记作:Al; 点 A 在直线 l 外,记作 A l;直线与平面的关系:直线 l 在平面 内,记作 l ;直线 l 不在平面 内,记作 l 。(2)公理 1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用:检验桌面是否平; 判断直线
25、是否在平面内用符号语言表示公理 1: ,AlBl- 9 -(3)公理 2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理 2 及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据(4)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面 和 相交,交线是 a,记作 a。符号语言: ,PABlP公理 3 的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理 4
26、:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 异面直线所成角:直线 a、b 是异面直线,经过空间任意一点 O,分别引直线 aa,b b,则把直线 a和 b所成的锐角(或直角)叫做异面直线 a 和 b 所成的角。两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:根据异面直线的定义;异面直线的判定定理(2)在异面直线所成角定义
27、中,空间一点 O 是任取的,而和点 O 的位置无关。求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。 B、证明作出的角即为所求角 C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系直线在平面内有无数个公共点三种位置关系的符号表示:a aA a(9)平面与平面之间的位置关系:平行没有公共点;相交有一条公共直线。b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行
28、。线线平行 线面平行线面平行的性质定理:如 果 一 条 直 线 和 一 个 平 面 平 行 , 经 过 这 条 直 线 的 平 面 和 这 个 平 面 相 交 ,那 么 这 条 直 线 和 交 线 平 行 。 线面平行 线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行) ,(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行面面平行) ,(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。
29、(面面平行线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。 (面面平行线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义- 10 -两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角) ,就说这两个平面垂直。(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个
30、平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。9、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为 。0两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。两条异面直线所成的角:过空间任意一点 O,分别作与两条异面直线 a,b 平行的直线 ,ba,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角平面的
31、平行线与平面所成的角:规定为 。 平面的垂线与平面所成的角:规定为 。0 90平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算” 。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面
32、角的面。二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修 4 知识点正 角 :按 逆 时 针 方 向 旋 转 形 成 的 角1、 任 意 角 负 角 按 顺 时 针 方 向 旋 转
33、形 成 的 角零 角 :不 作 任 何 旋 转 形 成 的 角2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则x称 为第几象限角- 11 -PvxyAOMT 第一象限角的集合为 3603609,kkk第二象限角的集合为 918第三象限角的集合为 18270,kkk第四象限角的集合为 3602736终边在 轴上的角的集合为x,k终边在 轴上的角的集合为y1890k终边在坐标轴上的角的集合为 ,3、与角 终边相同的角的集合为36,kk4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,*nn再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原
34、来是第几象x 限对应的标号即为 终边所落在的区域n5、长度等于半径长的弧所对的圆心角叫做 弧度16、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 rllr7、弧度制与角度制的换算公式: , , 236018057.38、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则为 弧 度 制 rlCS, , lr2Crl21Slr9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距,xy离是 ,则 , , 20rxysinyrcosxrtan010、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正11、三角函
35、数线: , , sistA12、同角三角函数的基本关系: 221incos1;22sin1cos,sitaniita,tan - 12 -13、三角函数的诱导公式:, , 1sin2sinkcos2cosktan2tankk, , , , 3sisicsstata, , 4noconn, 5sics2si2, 6inoin14、函数 的图象上所有点向左(右)平移 个单位长度,得到函数siyx 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)insinyx到原来的 倍(纵坐标不变) ,得到函数 的图象;再将函数1i的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变) ,siyx A得
36、到函数 的图象sinxA函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变) ,得y 1到函数的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,sinxsinyx得到函数 的图象;再将函数 的图象上所有点的纵坐标伸iysinyx长(缩短)到原来的 倍(横坐标不变) ,得到函数 的图象AsixA函数 的性质:sin0,yx振幅: ;周期: ;频率: ;相位: ;初相: 212fx函数 ,当 时,取得最小值为 ;当 时,取得最大值siyxA1xminy2为 ,则 , , maxmain12ymaxin2y21xx15、正弦函数、余弦函数和正切函数的图象与性质:- 13 -s
37、inyxcosyxtanyx图象定义域 RR,2xk值域 1,1,R最值当 时,2xk;当may2xk时, min1y当 时, 2xk;当may时, kmin1y既无最大值也无最小值周期性2奇偶性奇函数 偶函数 奇函数单调性在 2,2k上是增函数;在32,2k上是减函数在 上,2kk是增函数;在 ,上是减函数k在 ,2k上是增函数对称性对称中心 ,0k对称轴 2x对称中心 ,02kk对称轴 x对称中心 ,02k无对称轴16、向量:既有大小,又有方向的量数量:只有大小,没有方向的量有向线段的三要素:起点、方向、长度函 数性质- 14 -零向量:长度为 的向量0单位向量:长度等于 个单位的向量1平
38、行向量(共线向量):方向相同或相反的非零向量零向量与任一向量平行相等向量:长度相等且方向相同的向量17、向量加法运算:三角形法则的特点:首尾相连平行四边形法则的特点:共起点三角形不等式: abab运算性质:交换律: ;结合律: ;abcc0aa坐标运算:设 , ,1,xy2,bxy则 12b18、向量减法运算:三角形法则的特点:共起点,连终点,方向指向被减向量坐标运算:设 , ,1,axy2,bxy则 12b设 、 两点的坐标分别为 , ,则 A1,xy2,12,xyA19、向量数乘运算:实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 a a ;当 时, 的方向与 的方向相同;当 时,
39、 的方向与 的方向相反;当 时,000a运算律: ; ; aaab坐标运算:设 ,则 ,xy,xy20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 0b a设 , ,其中 ,则当且仅当 时,向量 、 共1,axy2,bxy 1210xy0bb a C AaC- 15 -线21、平面向量基本定理:如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任1e2意向量 ,有且只有一对实数 、 ,使 (不共线的向量 、 作为这一平面内a12ae1e2所有向量的一组基底)23、平面向量的数量积: 零向量与任一向量的数量积为 cos0,80bab 0性质:设 和 都是非零向量,则 当
40、 与 同向时, ;当ababab与 反向时, ; 或 a2运算律: ; ; bacc坐标运算:设两个非零向量 , ,则 1,xy2,bxy12abxy若 ,则 ,或 ,axy22设 , ,则 12,bxy120axy设 、 都是非零向量, , , 是 与 的夹角,则1,bab122cosxyab24、两角和与差的正弦、余弦和正切公式: ;cscossin ; ;sinsicsi ;on ( ) ;tantan1ttatan1tan ( ) ttanttntt25、二倍角的正弦、余弦和正切公式: sin2icos- 16 - ( ,2222cossincos1sin2cos1) 21in 2ta
41、tn26、 ,其中 2sicossinAAtanA高中数学必修 5 知识点1、正弦定理:在 中, 、 、 分别为角 、 、 的对边, 为 的外接圆的半CAabcACRCA径,则有 2sinisinabR2、正弦定理的变形公式: , , ;i2sin2sinc , , ;iRic ;:sn:siabcCA i nisinab3、三角形面积公式: 11sin22CScaCcA4、余弦定理:在 中,有 , ,2obA2cosba22coscab5、余弦定理的推论: , , 22cabA22osca22osbcCa6、设 、 、 是 的角 、 、 的对边,则:若 ,则 ;abcC22bc90若 ,则
42、;若 ,则 229022ac9015、数列的通项公式:表示数列 的第 项与序号 之间的关系的公式nn16、数列的递推公式:表示任一项 与它的前一项 (或前几项)间的关系的公式117、如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差18、由三个数 , , 组成的等差数列可以看成最简单的等差数列,则 称为 与 的等差中aAb Aab- 17 -项若 ,则称 为 与 的等差中项2acbbac19、若等差数列 的首项是 ,公差是 ,则 n1d1nad20、通项公式的变形: ; ; ;nma1n 1na ; 1nad21、若 是等差数列
43、,且 ( 、 、 、 ) ,则 ;若nnpqnp*qmnpqaa是等差数列,且 ( 、 、 ) ,则 a2*2npq22、等差数列的前 项和的公式: ; n1nnaS12nSad23、等差数列的前 项和的性质: 若项数为 ,则 ,且*21n, Snd偶 奇 1nSa奇偶若项数为 ,则 ,且 , (其中*221nnSanSa奇 偶 1S奇偶, ) nSa奇 1nSa偶24、如果一个数列从第 项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比25、在 与 中间插入一个数 ,使 , , 成等比数列,则 称为 与 的等比中项若bGbGab,则称 为 与 的等
44、比中项2Gaab26、若等比数列 的首项是 ,公比是 ,则 n1q1na27、通项公式的变形: ; ; ;nmna1n1nnaqnmnaq28、若 是等比数列,且 ( 、 、 、 ) ,则 ;若nmnpqnp*qmnpqa是等比数列,且 ( 、 、 ) ,则 a2*2npqa- 18 -29、等比数列 的前 项和的公式: na11nnnaqSaq30、等比数列的前 项和的性质: 若项数为 ,则 *2S偶奇 nnmmSqS , , 成等比数列2n32n31、 ; ; 0ab0ab0ab32、不等式的性质: ; ; ;,cabc , ; ;,cc, ,dd ; ;0abdabd 01nabn ,1nn338、在平面直角坐标系中,已知直线 ,坐标平面内的点 0xyCA0,xy若 , ,则点 在直线 的上方00xyCA0,xyC若 , ,则点 在直线 的下方xy39、在平面直角坐标系中,已知直线 CA若 ,则 表示直线 上方的区域;