1、精选高中模拟试卷第 1 页,共 16 页雨湖区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知一个算法的程序框图如图所示,当输出的结果为 时,则输入的值为( )21A B C 或 D 或212102 观察下列各式:a+b=1,a 2+b2=3,a 3+b3=4,a 4+b4=7,a 5+b5=11,则 a10+b10=( )A28 B76 C123 D1993 集合 A=1,2,3,集合 B=1,1,3,集合 S=AB,则集合 S 的子集有( )A2 个 B3 个 C4 个 D8 个4 已知 是球 的球面上两点, , 为该球面上的动点,若
2、三棱锥 体积的最大,O60AOCOABC值为 ,则球 的体积为( )18A B C D1281428【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力5 等比数列a n中,a 4=2, a5=5,则数列lga n的前 8 项和等于( )A6 B5 C3 D46 执行如图所示的一个程序框图,若 f(x)在 1,a 上的值域为0,2,则实数 a 的取值范围是( )A(0,1 B1, C1,2 D ,2精选高中模拟试卷第 2 页,共 16 页7 已知 d 为常数,p:对于任意 nN*,a n+2an+1=d;q:数列 an是公差为 d 的等差数列
3、,则p 是q 的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件8 不等式 x(x1)2 的解集是( )Ax|2x 1 Bx| 1 x2 Cx|x1 或 x 2 Dx|x2 或 x19 与463终边相同的角可以表示为(kZ)( )Ak360+463 Bk360 +103 Ck360+257 Dk36025710复数 Z= (i 为虚数单位)在复平面内对应点的坐标是( )A(1,3) B(1,3) C(3,1) D(2,4)11已知 ACBC,AC=BC,D 满足 =t +(1t ) ,若 ACD=60,则 t 的值为( )A B C 1 D12(文科)要得到 的图象,
4、只需将函数 的图象( )2logx2logfxA向左平移 1 个单位 B向右平移 1 个单位 C向上平移 1 个单位 D向下平移 1 个单位二、填空题13已知三次函数 f(x)=ax 3+bx2+cx+d 的图象如图所示,则 = 14【盐城中学 2018 届高三上第一次阶段性考试】函数 f(x)=xlnx 的单调减区间为 15f(x)=x (x c) 2 在 x=2 处有极大值,则常数 c 的值为 14已知集合 ,若 3M,5 M,则实数 a 的取值范围是 16【2017-2018 第一学期东台安丰中学高三第一次月考】函数 的单调递增区间为2lnfx_17已知 a= ( cosxsinx)dx
5、,则二项式(x 2 ) 6 展开式中的常数项是 精选高中模拟试卷第 3 页,共 16 页18已知函数 , ,则 , 的值域为 21,0()xf()21xg(2)fg()fgx 【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.三、解答题19已知点 F(0,1),直线 l1:y=1,直线 l1l2 于 P,连结 PF,作线段 PF 的垂直平分线交直线 l2 于点H设点 H 的轨迹为曲线 r()求曲线 r 的方程;()过点 P 作曲线 r 的两条切线,切点分别为 C,D,()求证:直线 CD 过定点;()若 P(1, 1),过点 O 作动直线 L 交曲
6、线 R 于点 A,B ,直线 CD 交 L 于点 Q,试探究 + 是否为定值?若是,求出该定值;不是,说明理由阿啊阿20【徐州市 2018 届高三上学期期中】已知函数 ( , 是自然对数的底数).(1)若函数 在区间 上是单调减函数,求实数 的取值范围;(2)求函数 的极值;(3)设函数 图象上任意一点处的切线为 ,求 在 轴上的截距的取值范围精选高中模拟试卷第 4 页,共 16 页21(本小题满分 12 分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的 40 名学生参加,各大学邀请的学生如下表所示:大学 甲 乙 丙 丁人数 8 12 8 12从这 40 名学生中按分
7、层抽样的方式抽取 10 名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出 2 名学生发言,求这 2 名学生来自同一所大学的概率.22已知函数 f(x)=alnx+x 2+bx+1 在点(1,f(1)处的切线方程为 4xy12=0(1)求函数 f(x)的解析式;(2)求 f(x)的单调区间和极值23在平面直角坐标系 xoy 中,已知圆 C1:(x+3) 2+(y1) 2=4 和圆 C2:(x4) 2+(y5) 2=4精选高中模拟试卷第 5 页,共 16 页(1)若直线 l 过点 A(4,0),且被圆 C1 截得的弦长为 2 ,求直线 l 的
8、方程(2)设 P 为平面上的点,满足:存在过点 P 的无穷多对互相垂直的直线 l1 和 l2,它们分别与圆 C1 和 C2 相交,且直线 l1 被圆 C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相等,求所有满足条件的点 P 的坐标24(本小题满分 10 分)选修 4-5:不等式选讲已知函数 , .|1|2|)(xxf xg)((1)解不等式 ;)((2)对任意的实数,不等式 恒成立,求实数 的最小值.111)(2Rmf m精选高中模拟试卷第 6 页,共 16 页雨湖区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】 D【解析】试题分析:
9、程序是分段函数 ,当 时, ,解得 ,当 时, ,xylg20x21x1x021lgx解得 ,所以输入的是 或 ,故选 D.10x1考点:1.分段函数;2.程序框图.111112 【答案】C【解析】解:观察可得各式的值构成数列 1,3,4,7,11,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项继续写出此数列为 1,3,4,7,11,18,29,47,76,123,第十项为 123,即 a10+b10=123,故选 C3 【答案】C【解析】解:集合 A=1,2,3,集合 B=1,1,3,集合 S=AB=1,3,则集合 S 的子集有 22=4 个,故选:C【点评】本题主要考
10、查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础4 【答案】D【解析】当 平面 平面时,三棱锥 的体积最大,且此时 为球的半径设球的半径为OABOABCOC,则由题意,得 ,解得 ,所以球的体积为 ,故选 DR21sin601833R6R3428R5 【答案】D【解析】解:等比数列a n中 a4=2,a 5=5,a 4a5=25=10,数列lga n的前 8 项和 S=lga1+lga2+lga8=lg(a 1a2a8) =lg(a 4a5) 4=4lg(a 4a5)=4lg10=4故选:D精选高中模拟试卷第 7 页,共 16 页【点评】本题考查等比数列的性质,涉及
11、对数的运算,基本知识的考查6 【答案】B【解析】解:由程序框图知:算法的功能是求 f(x)= 的值,当 a0 时,y=log 2(1x)+1 在 1,a 上为减函数,f(1)=2,f(a)=01 a= ,a= ,不符合题意;当 a0 时,f (x)=3x 23x1 或 x1,函数在0,1上单调递减,又 f(1)=0,a1;又函数在1,a上单调递增, f(a)=a 33a+22a 故实数 a 的取值范围是1 , 故选:B【点评】本题考查了选择结构的程序框图,考查了导数的应用及分段函数值域的求法,综合性强,体现了分类讨论思想,解题的关键是利用导数法求函数在不定区间上的最值7 【答案】A【解析】解:
12、p:对于任意 nN*,a n+2an+1=d;q:数列 an是公差为 d 的等差数列,则p: nN*,a n+2an+1d; q:数列 an不是公差为 d 的等差数列,由pq,即 an+2an+1 不是常数,则数列 an就不是等差数列,若数列 an不是公差为 d 的等差数列,则不存在 nN*,使得 an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立8 【答案】B【解析】解:x(x1)2,x2x20,即(x2 )(x+1)0,1x2,即不等式的解集为x|
13、 1x2故选:B精选高中模拟试卷第 8 页,共 16 页9 【答案】C【解析】解:与463 终边相同的角可以表示为:k360463 ,(k Z)即:k360+257 ,(kZ)故选 C【点评】本题考查终边相同的角,是基础题10【答案】A【解析】解:复数 Z= = =(1+2i)(1i)=3+i 在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的运算法则、几何意义,属于基础题11【答案】A【解析】解:如图,根据题意知,D 在线段 AB 上,过 D 作 DEAC,垂足为 E,作 DFBC ,垂足为 F;若设 AC=BC=a,则由 得,CE=ta,CF=(1 t)a;根据题意,ACD
14、=60,DCF=30; ;即 ;解得 故选:A【点评】考查当满足 时,便说明 D,A ,B 三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义精选高中模拟试卷第 9 页,共 16 页12【答案】C【解析】试题分析: ,故向上平移个单位.2222logllog1lxx考点:图象平移二、填空题13【答案】 5 【解析】解:求导得:f(x)=3ax 2+2bx+c,结合图象可得x=1,2 为导函数的零点,即 f(1)=f(2)=0,故 ,解得故 = =5故答案为:514【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系15【答案】 6 【解析】解:f(x)=x 3
15、2cx2+c2x,f(x)=3x 24cx+c2,f(2)=0c=2 或 c=6若 c=2,f(x)=3x 28x+4,令 f(x)0x 或 x2,f(x)0 x2,故函数在( , )及(2,+)上单调递增,在( , 2)上单调递减,x=2 是极小值点故 c=2 不合题意,c=6精选高中模拟试卷第 10 页,共 16 页故答案为 6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式16【答案】 20,【解析】17【答案】 240 【解析】解:a= ( cosxsinx)dx=( sinx+cosx) =11=2,则二项式(x 2 ) 6=(x 2+ ) 6 展开始的通项公
16、式为 Tr+1= 2rx123r,令 123r=0,求得 r=4,可得二项式(x 2 ) 6 展开式中的常数项是 24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题18【答案】 , . 21,)【解析】三、解答题19【答案】 【解析】满分(13 分)解:()由题意可知,|HF|=|HP|,点 H 到点 F( 0,1)的距离与到直线 l1:y=1 的距离相等,(2 分)精选高中模拟试卷第 11 页,共 16 页点 H 的轨迹是以点 F(0,1)为焦点,直线 l1:y=1 为准线的抛物线,(3 分)点 H 的轨迹方程为 x2=4y(4 分
17、)()()证明:设 P(x 1,1),切点 C(x C,y C), D(x D,y D)由 y= ,得 直线 PC:y+1= xC(xx 1),(5 分)又 PC 过点 C,y C= ,y C+1= xC(xx 1)= xCx1,y C+1= ,即 (6 分)同理 ,直线 CD 的方程为 ,(7 分)直线 CD 过定点(0,1)(8 分)()由()()P(1,1)在直线 CD 的方程为 ,得 x1=1,直线 CD 的方程为 设 l:y+1=k ( x1),与方程 联立,求得 xQ= (9 分)设 A(x A,y A),B(x B,y B)联立 y+1=k(x1)与 x2=4y,得x24kx+4
18、k+4=0,由根与系数的关系,得xA+xB=4kx AxB=4k+4(10 分)x Q1, xA1, xB1 同号, + =|PQ|= (11 分)精选高中模拟试卷第 12 页,共 16 页= , + 为定值,定值为 2(13 分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力20【答案】(1) (2)见解析(3)【解析】试题分析:(1)由题意转化为 在区间 上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数 的取值范围;(2)导函数有一个零点,再根
19、据 a 的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在 x 轴上的截距,最后根据 a 的正负以及基本不等式求截距的取值范围试题解析:(1)函数 的导函数 ,则 在区间 上恒成立,且等号不恒成立,又 ,所以 在区间 上恒成立, 记 ,只需 , 即 ,解得 (2)由 ,得 ,当 时,有 ; ,所以函数 在 单调递增, 单调递减,所以函数 在 取得极大值 ,没有极小值当 时,有 ; , 所以函数 在 单调递减, 单调递增,所以函数 在 取得极小值 ,没有极大值综上可知: 当 时,函数 在 取得极大值 ,没有极小值;当 时,函数 在 取得极小值
20、,没有极大值精选高中模拟试卷第 13 页,共 16 页(3)设切点为 ,则曲线在点 处的切线 方程为 ,当 时,切线 的方程为 ,其在 轴上的截距不存在当 时,令 ,得切线 在 轴上的截距为, 当 时,当且仅当 ,即 或 时取等号; 当 时,当且仅当 ,即 或 时取等号.所以切线 在 轴上的截距范围是 .点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为 0 的点,再判断导数为 0 的点的左、右两侧的导数符号.(2)已知函数求极值.求 求方程 的根列表检验 在 的根的附近两侧的符号下结论.(3)已知极值求参数.若函数 在点 处取得极值,则 ,且在该点左、右两侧的导数
21、值符号相反.21【答案】(1)甲,乙,丙,丁;(2) .25P【解析】精选高中模拟试卷第 14 页,共 16 页试题分析:(1)从这 名学生中按照分层抽样的方式抽取 名学生,则各大学人数分别为甲,乙,丙,丁;4010(2)利用列举出从参加问卷调查的 名学生中随机抽取两名学生的方法共有 种,这来自同一所大学的取15法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这 40 名学生中按照分层抽样的方式抽取 10 名学生,则各大学人数分别为甲 2,乙 3,丙2,丁 3. (2)设乙中 3 人为 ,丁中 3 人为 ,从这 6 名学生中随机选出 2 名学生发言的结果为123,a123,b
22、, , , , , , , , , ,1,a1,b12,a2,12,ba,32,ba31,, , , , ,共 15 种, 32b3,3,这 2 名同学来自同一所大学的结果共 6 种,所以所求概率为 .5P考点:1、分层抽样方法的应用;2、古典概型概率公式.22【答案】 【解析】解:(1)求导 f(x)= +2x+b,由题意得:f(1)=4,f(1)= 8,则 ,解得 ,所以 f(x)=12lnx+x 210x+1;(2)f(x)定义域为(0,+),f(x)= ,令 f(x)0,解得: x2 或 x3,所以 f(x)在(0,2)递增,在( 2,3)递减,在(3,+)递增,故 f(x)极大值=f
23、(2)=12ln215,f(x)极小值=f(3)=12ln32023【答案】【解析】【分析】(1)因为直线 l 过点 A(4,0),故可以设出直线 l 的点斜式方程,又由直线被圆 C1 截得的弦长为2 ,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率 k 的方程,解方程求出 k 值,代入即得直线 l 的方程(2)与(1)相同,我们可以设出过 P 点的直线 l1 与 l2 的点斜式方程,由于两直线斜率为 1,且直线 l1 被圆C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相等,故我们可以得到一个关于直线斜率 k 的方程,解方程求出k 值,
24、代入即得直线 l1 与 l2 的方程【解答】解:(1)由于直线 x=4 与圆 C1 不相交;精选高中模拟试卷第 15 页,共 16 页直线 l 的斜率存在,设 l 方程为:y=k(x4)(1 分)圆 C1 的圆心到直线 l 的距离为 d,l 被C 1 截得的弦长为 2d= =1(2 分)d= 从而 k(24k+7)=0 即 k=0 或 k=直线 l 的方程为:y=0 或 7x+24y28=0(5 分)(2)设点 P(a,b)满足条件,由题意分析可得直线 l1、l 2 的斜率均存在且不为 0,不妨设直线 l1 的方程为 yb=k(xa ),k0则直线 l2 方程为:yb= (xa )(6 分)C
25、 1 和C 2 的半径相等,及直线 l1 被圆 C1 截得的弦长与直线 l2 被圆 C2 截得的弦长相等,C 1 的圆心到直线 l1 的距离和圆 C2 的圆心到直线 l2 的距离相等即 = (8 分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4 abk)即(a+b2)k=ba+3 或(ab+8)k=a+b5因 k 的取值有无穷多个,所以 或 (10 分)解得 或这样的点只可能是点 P1( , )或点 P2( , )(12 分)24【答案】(1) 或 ;(2).3|x3【解析】试题解析:(1)由题意不等式 可化为 ,)(xgf|1|2|x当 时, ,解得 ,即 ;x1)2(x3当 时, ,解得 ,即 ;1精选高中模拟试卷第 16 页,共 16 页当 时, ,解得 ,即 (4 分)2x1x3x综上所述,不等式 的解集为 或 . (5 分))(gf 1|3(2)由不等式 可得 ,mxxf2)( mx|2|分离参数 ,得 ,m|1|ax)( , ,故实数 的最小值是. (10 分)3)(1| x考点:绝对值三角不等式;绝对值不等式的解法1