1、精选高中模拟试卷第 1 页,共 15 页穆棱市实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 某种细菌在培养过程中,每 20 分钟分裂一次(一个分裂为两个)经过 2 个小时,这种细菌由 1 个可繁殖成( )A512 个 B256 个 C128 个 D64 个2 487被 7 除的余数为 a(0a 7),则 展开式中 x3的系数为( )A4320 B4320 C20 D203 若 则 的值为( ))2(,2)(xfxfx1(fA8 B C2 D 8124 若 ,则 sin()34cos()3A、 B、 C、 D、78114785 定义在 R 上的
2、奇函数 f(x)满足 f(x+3 )=f(x),当 0x1 时,f (x)=2 x,则 f (2015)=( )A2 B 2 C D6 已知函数 f(x)满足 f(x)=f( x),且当 x( , )时,f (x)=e x+sinx,则( )A B CD7 已知椭圆 C: + =1(ab0)的左、右焦点为 F1、F 2,离心率为 ,过 F2的直线 l 交 C 于A、B 两点,若AF 1B 的周长为 4 ,则 C 的方程为( )A + =1 B +y2=1 C + =1 D + =18 复数 z 为纯虚数,若(3 i)z=a+i (i 为虚数单位),则实数 a 的值为( )精选高中模拟试卷第 2
3、 页,共 15 页A B3 C 3 D9 某几何体的三视图如图所示,其中正视图是腰长为 2 的等腰三角形,俯视图是半径为1 的半圆,则其侧视图的面积是( )A B C1 D10设函数 f(x)= 则不等式 f(x) f(1)的解集是( )A(3 ,1)(3,+ ) B( 3,1) (2,+) C( 1,1) (3,+) D(,3)(1,3)11若圆心坐标为 的圆在直线 上截得的弦长为 ,则这个圆的方程是( )2,0xy2A B C20xy4xyD18 221612设函数 f(x)= 的最小值为 1,则实数 a 的取值范围是( )Aa2 Ba 2 Ca Da二、填空题13双曲线 x2my2=1(
4、m0)的实轴长是虚轴长的 2 倍,则 m 的值为 14意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于他前面两个数的和该数列是一个非常美丽、和谐的数列,有很多奇妙的属性比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割 0.6180339887人们称该数列a n为“斐波那契数列” 若把该数列a n的每一项除以 4 所得的余数按相对应的顺序组成新数列b n,在数列b n中第 2016 项的值是 15若命题“x R,|x2| kx+1”为真,则 k 的取值范围是 精选高中模拟试卷第 3 页,共 15 页16方程(
5、x+y 1) =0 所表示的曲线是 17若双曲线的方程为 4x29y2=36,则其实轴长为 18设函数 有两个不同的极值点 , ,且对不等式3()()fxax1x212()0fxf恒成立,则实数的取值范围是 三、解答题19如图在长方形 ABCD 中, 是 CD 的中点,M 是线段 AB 上的点, (1)若 M 是 AB 的中点,求证: 与 共线;(2)在线段 AB 上是否存在点 M,使得 与 垂直?若不存在请说明理由,若存在请求出 M 点的位置;(3)若动点 P 在长方形 ABCD 上运动,试求 的最大值及取得最大值时 P 点的位置20已知 P(m,n)是函授 f(x)=e x1 图象上任一于
6、点()若点 P 关于直线 y=x1 的对称点为 Q(x,y),求 Q 点坐标满足的函数关系式()已知点 M(x 0,y 0)到直线 l:Ax+By+C=0 的距离 d= ,当点 M 在函数 y=h(x)图象上时,公式变为 ,请参考该公式求出函数(s,t)=|se x1 1|+|t ln(t 1)|,(sR,t 0)的最小值精选高中模拟试卷第 4 页,共 15 页21如图,在边长为 a 的菱形 ABCD 中,ABC=60,PC面 ABCD,E,F 是 PA 和 AB 的中点(1)求证:EF平面 PBC;(2)求 E 到平面 PBC 的距离22求下列函数的定义域,并用区间表示其结果(1)y= +
7、;(2)y= 精选高中模拟试卷第 5 页,共 15 页23(本小题满分 12 分)如图所示,已知 平面 , 平面 , 为等边ABCDEACD三角形, , 为 的中点.ABDE2FCD(1)求证: 平面 ;/(2)平面 平面 .C24已知 ,其中 e 是自然常数,a R()讨论 a=1 时,函数 f( x)的单调性、极值;()求证:在()的条件下,f(x)g(x)+ 精选高中模拟试卷第 6 页,共 15 页穆棱市实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:经过 2 个小时,总共分裂了 =6 次,则经过 2 小时,这种细菌能由 1
8、个繁殖到 26=64 个故选:D【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题2 【答案】B 解析:解:48 7=(49 1) 7= + 1,487被 7 除的余数为 a(0 a7),a=6, 展开式的通项为 Tr+1= ,令 63r=3,可得 r=3, 展开式中 x3的系数为 =4320,故选:B.3 【答案】B【解析】试题分析: ,故选 B。31128f考点:分段函数。4 【答案】A【解析】 选 A,解析:2227cos()cos()1sin()33385 【答案】B【解析】解:因为 f(x+3 )=f(x),函数 f(x)的周期是 3,所以 f(2015)=f(36
9、72 1)=f(1);又因为函数 f(x)是定义 R 上的奇函数,当 0x1 时,f(x)=2 x,所以 f( 1)=f(1)=2,精选高中模拟试卷第 7 页,共 15 页即 f(2015)= 2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出 f(2015)=f(36721)=f(1)6 【答案】D【解析】解:由 f(x)=f(x)知,f( )=f( )=f( ),当 x( , )时,f(x)=e x+sinx 为增函数 ,f( )f( )f( ),f( )f( )f( ),故选:D7 【答案】A【解析】解:AF 1B 的周长为 4 ,AF 1B
10、的周长=|AF 1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4 ,a= ,离心率为 , ,c=1,b= = ,椭圆 C 的方程为 + =1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题精选高中模拟试卷第 8 页,共 15 页8 【答案】D【解析】解:(3i)z=a+i, ,又 z 为纯虚数, ,解得:a= 故选:D【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题9 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又正视图是腰长为 2 的等腰三角形,俯视图是半径为 1 的半圆,半圆锥的底面半径为
11、 1,高为 ,即半圆锥的侧视图是一个两直角边长分别为 1 和 的直角三角形,故侧视图的面积是 ,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状10【答案】A【解析】解:f(1)=3,当不等式 f(x)f(1)即:f (x)3如果 x0 则 x+63 可得 x3,可得3x0如果 x0 有 x24x+63 可得 x3 或 0x1综上不等式的解集:(3,1 )(3,+)故选 A11【答案】B【解析】精选高中模拟试卷第 9 页,共 15 页考点:圆的方程.111112【答案】C【解析】解:当 x 时,f(x)=4 x323=1,当 x= 时,取得最小值 1
12、;当 x 时,f(x)=x 22x+a=(x1) 2+a1,即有 f(x)在(, )递减,则 f(x)f ( )=a ,由题意可得 a 1,解得 a 故选:C【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题二、填空题13【答案】 4 【解析】解:双曲线 x2my2=1 化为 x2 =1,a 2=1,b 2= ,实轴长是虚轴长的 2 倍,精选高中模拟试卷第 10 页,共 15 页2a=22b,化为 a2=4b2,即 1= ,解得 m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键14【答案】 0 【解析】解:1,1,
13、2,3,5,8,13,除以 4 所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0,即新数列b n是周期为 6 的周期数列,b2016=b3366=b6=0,故答案为:0【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题15【答案】 1, ) 【解析】解:作出 y=|x2|,y=kx+1 的图象,如图所示,直线 y=kx+1 恒过定点(0,1),结合图象可知k1, )故答案为: 1, )【点评】本题考查全称命题,考查数形结合的数学思想,比较基础16【答案】 两条射线和一个圆 精选高中模拟试卷第 11 页,共 15 页【解析】解:由题意可得 x2+y240,表示的区域是
14、以原点为圆心的圆的外部以及圆上的部分由方程(x+y 1) =0,可得 x+y1=0,或 x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆【点评】本题主要考查直线和圆的方程的特征,属于基础题17【答案】 6 【解析】解:双曲线的方程为 4x29y2=36,即为: =1,可得 a=3,则双曲线的实轴长为 2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题18【答案】 1(,2【解析】试题分析:因为 ,故得不等式 ,即12()0fxf32121120xaxax,由于2123 0xa,令 得
15、方程 ,因 , 故faf224a,代入前面不等式,并化简得 ,解不等式得 或 ,123x 1a25012因此, 当 或 时, 不等式 成立,故答案为 . a12a120fxf(,2考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数 的到函数,令 考虑判别式大于零,根据韦达定理求出fx0fx的值,代入不等式 ,得到关于的高次不等式,再利用“穿针引线”即可求得12,x12()f实数的取值范围.111精选高中模拟试卷第 12 页,共 15 页三、解答题19【答案
16、】 【解析】(1)证明:如图,以 AB 所在直线为 x 轴,AD 所在直线为 y 轴建立平面直角坐标系,当 M 是 AB 的中点时,A(0,0),N (1,1),C(2,1),M(1,0),由 ,可得 与 共线;(2)解:假设线段 AB 上是否存在点 M,使得 与 垂直,设 M(t,0)(0t2),则 B(2,0),D (0,1), M(t,0),由 =2(t2)1=0,解得 t= ,线段 AB 上存在点 ,使得 与 垂直;(3)解:由图看出,当 P 在线段 BC 上时, 在 上的投影最大,则 有最大值为 4【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解
17、题思想方法,是中档题20【答案】 【解析】解:(1)因为点 P,Q 关于直线 y=x1 对称,所以 解得 又 n=em1 ,所以 x=1e (y+1) 1 ,即 y=ln(x1)(2)(s,t)=|se x1 1|+|t ln(t 1)1|精选高中模拟试卷第 13 页,共 15 页=,令 u(s)=则 u(s),v(t)分别表示函数 y=ex1 ,y=ln (t1)图象上点到直线 xy1=0 的距离由(1)知,u min(s)=v min(t)而 f(x)=e x1 ,令 f(s)=1 得 s=1,所以 umin(s)= 故 【点评】本题一方面考查了点之间的轴对称问题,同时利用函数式的几何意义
18、将问题转化为点到直线的距离,然后再利用函数的思想求解体现了解析几何与函数思想的结合21【答案】 【解析】(1)证明:AE=PE,AF=BF,EFPB又 EF平面 PBC,PB 平面 PBC,故 EF平面 PBC;(2)解:在面 ABCD 内作过 F 作 FHBC 于 HPC 面 ABCD,PC面 PBC面 PBC面 ABCD又面 PBC面 ABCD=BC,FH BC,FH 面 ABCDFH面 PBC又 EF|平面 PBC,故点 E 到平面 PBC 的距离等于点 F 到平面 PBC 的距离 FH在直角三角形 FBH 中,FBC=60,FB= ,FH=FBsinFBC= a,故点 E 到平面 PB
19、C 的距离等于点 F 到平面 PBC 的距离,等于 a22【答案】 精选高中模拟试卷第 14 页,共 15 页【解析】解:(1)y= + , ,解得 x2 且 x2 且 x3,函数 y 的定义域是(2,3)(3,+);(2)y= , ,解得 x4 且 x1 且 x3,函数 y 的定义域是(,1)(1,3)(3,423【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)推导出 , ,从而 平面 ,连接 ,则 三点BCA1AC1B1,NACB,1共线,推导出 ,由线面垂直的判定定理得 平面 ;(2)连接 交MNCN,1 NM于点 ,推导出 , ,则 是二面角 的平面角由此能求出二面
20、1AHHQH角 的余弦值1B试题解析:(1)如图,取 的中点 ,连接 . 为 的中点, 且 .EGBF,DEGF/D21 平面 , 平面 , , .DACE/AB/又 , . 四边形 为平行四边形,则 . (4 分)A2F 平面 , 平面 , 平面 (6 分)FBCB/C精选高中模拟试卷第 15 页,共 15 页考点:直线与平面平行和垂直的判定24【答案】 【解析】解:(1)a=1 时,因为 f(x)=x lnx,f(x)=1 ,当 0x1 时,f(x)0,此时函数 f(x)单调递减当 1xe 时,f(x)0,此时函数 f(x)单调递增所以函数 f(x)的极小值为 f(1)=1(2)因为函数 f(x)的极小值为 1,即函数 f(x)在( 0,e上的最小值为 1又 g(x)= ,所以当 0xe 时,g(x)0,此时 g(x)单调递增所以 g(x)的最大值为 g(e)= ,所以 f(x) ming(x) max ,所以在(1)的条件下,f(x )g(x)+ 【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题