收藏 分享(赏)

天柱县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9523885 上传时间:2019-08-12 格式:DOC 页数:17 大小:518KB
下载 相关 举报
天柱县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
天柱县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
天柱县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
天柱县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
天柱县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页天柱县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图所示,函数 y=|2x2|的图象是( )A B C D2 如图,在正四棱锥 SABCD 中,E,M,N 分别是 BC,CD,SC 的中点,动点 P 在线段 MN 上运动时,下列四个结论:EPBD;EP AC; EP面 SAC;EP面 SBD 中恒成立的为( )A B C D3 设定义在 R 上的函数 f(x)对任意实数 x,y,满足 f(x)+f(y)=f(x+y),且 f(3)=4,则 f(0)+f( 3)的值为( )A2 B4 C0 D44

2、设 k=1,2,3,4,5,则(x+2) 5的展开式中 xk的系数不可能是( )A10 B40 C50 D805 若 是两条不同的直线, 是三个不同的平面,则下列为真命题的是( ),mn,A若 ,则B若 ,则,/C若 ,则D若 ,则,6 已知 f(x)是定义在 R 上周期为 2 的奇函数,当 x(0,1)时,f(x)=3 x1,则 f(log 35)=( )A B C4 D7 抛物线 y=x2上的点到直线 4x+3y8=0 距离的最小值是( )精选高中模拟试卷第 2 页,共 17 页A B C D38 已知函数 f(x)=e x+x,g(x)=lnx+x,h(x)=x 的零点依次为 a,b,c

3、,则( )Acba Ba bc Cc ab Dbac9 已知奇函数 是 上的增函数,且 ,则 的取值范围是( )()f1,1(3)(0ftftftA、 B、 C、 D、163tt243tt621310圆锥的高扩大到原来的 倍,底面半径缩短到原来的 ,则圆锥的体积( )12A.缩小到原来的一半 B.扩大到原来的倍C.不变 D.缩小到原来的 611从 1,2,3,4,5 中任取 3 个不同的数,则取出的 3 个数可作为三角形的三边边长的概率是( )A B C D12已知变量 满足约束条件 ,则 的取值范围是( ),xy2017xyyxA B C D9,659(,6,)5(,36,)3,6二、填空题

4、13下列命题:集合 的子集个数有 16 个;,abcd定义在 上的奇函数 必满足 ;R()fx(0)f 既不是奇函数又不是偶函数;2()1)fx , , ,从集合 到集合 的对应关系 是映射;AB1:|fABf 在定义域上是减函数()fx其中真命题的序号是 14某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱乒乓球运动,8 人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 精选高中模拟试卷第 3 页,共 17 页15在ABC 中,角 A,B, C 的对边分别为 a,b,c,已知 sinAsinB+sinBsinC+cos2B=1若 C= ,则 = 16设 f(x)是(

5、x 2+ ) 6展开式的中间项,若 f(x)mx 在区间 , 上恒成立,则实数 m 的取值范围是 17已知集合 M=x|x|2,x R,N=xR|(x3)lnx 2=0,那么 MN= 18已知(1+x+x 2)(x ) n(n N+)的展开式中没有常数项,且 2n8,则 n= 三、解答题19等比数列a n的各项均为正数,且 2a1+3a2=1,a 32=9a2a6,()求数列a n的通项公式;()设 bn=log3a1+log3a2+log3an,求数列 的前 n 项和20已知函数 , 3()1xf2,5(1)判断 的单调性并且证明;(2)求 在区间 上的最大值和最小值()fx,精选高中模拟试

6、卷第 4 页,共 17 页21已知:函数 f(x)=log 2 ,g(x)=2ax+1a,又 h(x)=f(x)+g(x)(1)当 a=1 时,求证:h(x)在 x(1,+)上单调递增,并证明函数 h(x)有两个零点;(2)若关于 x 的方程 f(x) =log2g(x)有两个不相等实数根,求 a 的取值范围22命题 p:关于 x 的不等式 x2+2ax+40 对一切 xR 恒成立, q:函数 f(x)=(3 2a) x是增函数若pq 为真, pq 为假求实数 a 的取值范围23如图,四边形 ABCD 内接于O,过点 A 作O 的切钱 EP 交 CB 的延长线于 P,己知 PAB=25(1)若

7、 BC 是O 的直径,求D 的大小;(2)若DAE=25,求证:DA 2=DCBP精选高中模拟试卷第 5 页,共 17 页24已知 f(x)=x 2(a+b )x+3a(1)若不等式 f(x)0 的解集为1,3 ,求实数 a,b 的值;(2)若 b=3,求不等式 f(x)0 的解集精选高中模拟试卷第 6 页,共 17 页天柱县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:y=|2 x2|= ,x=1 时,y=0,x1 时, y0故选 B【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解2 【答案】 A【解析】解:如图

8、所示,连接 AC、BD 相交于点 O,连接 EM,EN在中:由异面直线的定义可知:EP 与 BD 是异面直线,不可能 EPBD,因此不正确;在中:由正四棱锥 SABCD,可得 SO底面 ABCD,ACBD,SOAC SO BD=O, AC 平面 SBD,E,M,N 分别是 BC,CD,SC 的中点,EMBD,MNSD ,而 EMMN=M,平面 EMN平面 SBD,AC平面 EMN,AC EP故正确在中:由同理可得:EM平面 SAC,若 EP平面 SAC,则 EPEM,与 EPEM=E 相矛盾,因此当 P 与 M 不重合时,EP 与平面 SAC 不垂直即不正确在中:由可知平面 EMN平面 SBD

9、,EP平面 SBD,因此正确故选:A精选高中模拟试卷第 7 页,共 17 页【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养3 【答案】B【解析】解:因为 f(x)+f( y)=f(x+y ),令 x=y=0,则 f(0)+f(0)=f(0+0 )=f(0),所以,f(0)=0;再令 y=x,则 f(x)+f(x)=f(0)=0 ,所以,f( x)= f(x),所以,函数 f(x)为奇函数又 f(3)=4 ,所以,f( 3)= f(3)=4,所以,f(0)+f(3)= 4故选:B【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数 f(x)为奇函数

10、是关键,考查推理与运算求解能力,属于中档题4 【答案】 C【解析】二项式定理【专题】计算题【分析】利用二项展开式的通项公式求出展开式的 xk的系数,将 k 的值代入求出各种情况的系数精选高中模拟试卷第 8 页,共 17 页【解答】解:(x+2) 5的展开式中 xk的系数为 C5k25k当 k1 时, C5k25k=C5124=80,当 k=2 时,C 5k25k=C5223=80,当 k=3 时,C 5k25k=C5322=40,当 k=4 时,C 5k25k=C542=10,当 k=5 时,C 5k25k=C55=1,故展开式中 xk的系数不可能是 50故选项为 C【点评】本题考查利用二项展

11、开式的通项公式求特定项的系数5 【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以 A 不正确;两个平面平行,两个平面内的直线不一定平行,所以 B 不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以 D 不正确;根据面面垂直的判定定理知 C 正确故选 C考点:空间直线、平面间的位置关系6 【答案】B【解析】解:f(x)是定义在 R 上周期为 2 的奇函数,f( log35)=f (log 352)=f(log 3 ),x (0,1)时,f(x)=3 x1f( log3 )故选:B7 【答案】A【解析】解:由 ,得 3x24x+8=0=(4

12、 ) 2438=800所以直线 4x+3y8=0 与抛物线 y=x2无交点设与直线 4x+3y8=0 平行的直线为 4x+3y+m=0联立 ,得 3x24xm=0精选高中模拟试卷第 9 页,共 17 页由=( 4) 243(m)=16+12m=0,得 m= 所以与直线 4x+3y8=0 平行且与抛物线 y=x2相切的直线方程为 4x+3y =0所以抛物线 y=x2上的一点到直线 4x+3y8=0 的距离的最小值是 = 故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题8 【答案】B【解析】解:由 f(x)=0 得 ex=x,由 g(x

13、)=0 得 lnx=x由 h(x)=0 得 x=1,即 c=1在坐标系中,分别作出函数 y=ex ,y=x,y=lnx 的图象,由图象可知a0,0b1,所以 abc故选:B【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键9 【答案】A【解析】精选高中模拟试卷第 10 页,共 17 页考点:函数的性质。10【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为 ,将圆锥的高扩大到原来213Vrh的倍,底面半径缩短到原来的 ,则体积为 ,所以 ,故选 A.122221()36Vrh12考点:圆锥的体积公式.111【答案】A【解析】解:从 1,2,3,4,5

14、 中任取 3 个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共 10个,取出的 3 个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共 3 个,故取出的 3 个数可作为三角形的三边边长的概率 P= 故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件12【答案】A【解析】试题分析:作出可行域,如图 内部(含边界), 表示点 与原点连线的斜率,易得 ,ABC

15、yx(,)y59(,)2A精选高中模拟试卷第 11 页,共 17 页, , ,所以 故选 A(1,6)B925OAk61OBk965yx考点:简单的线性规划的非线性应用二、填空题13【答案】【解析】试题分析:子集的个数是 ,故正确.根据奇函数的定义知正确.对于 为偶函数,故错2n 241fx误.对于 没有对应,故不是映射.对于减区间要分成两段,故错误.0x考点:子集,函数的奇偶性与单调性【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是 个;对于n奇函数来说,如果在 处有定义,那么一定有 ,偶函数没有这个性质;函数的奇偶性判断主要x0f根据定义 ,注意判断定义

16、域是否关于原点对称.映射必须集合 中任意一个,fffx A元素在集合 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B14【答案】 12 【解析】解:设两者都喜欢的人数为 x 人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10 x)人,由此可得(15x)+ (10x)+x+8=30 ,解得 x=3,精选高中模拟试卷第 12 页,共 17 页所以 15x=12,即所求人数为 12 人,故答案为:1215【答案】 = 【解析】解:在ABC 中,角 A,B,C 的对边分别为 a,b,c ,已知 sinAsinB+sinBsinC+cos2B=1,sinAsin

17、B+sinBsinC=2sin2B再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故 a,b,c 成等差数列C= ,由 a,b,c 成等差数列可得 c=2ba,由余弦定理可得 (2ba ) 2=a2+b22abcosC=a2+b2+ab化简可得 5ab=3b2, = 故答案为: 【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题16【答案】 5,+) 【解析】二项式定理【专题】概率与统计;二项式定理【分析】由题意可得 f(x) = x3,再由条件可得 m x2 在区间 , 上恒成立,求得 x2在区间 ,上的最大值,可得 m 的范围【解答】解:由题意可得 f

18、( x)= x6 = x3由 f(x)mx 在区间 , 上恒成立,可得 m x2 在区间 , 上恒成立,由于 x2在区间 , 上的最大值为 5,故 m5,即 m 的范围为5,+),故答案为:5,+)【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立精选高中模拟试卷第 13 页,共 17 页问题,属于中档题17【答案】 1,1 【解析】解:合 M=x|x|2, xR=x|2x2,N=xR|(x 3)lnx 2=0=3,1,1,则 MN=1,1,故答案为:1,1,【点评】本题主要考查集合的基本运算,比较基础18【答案】 5 【解析】二项式定理【专题】计算

19、题【分析】要想使已知展开式中没有常数项,需(x ) n(nN +)的展开式中无常数项、x 1项、x 2项,利用(x ) n(nN +)的通项公式讨论即可【解答】解:设(x ) n(nN +)的展开式的通项为 Tr+1,则 Tr+1= xnrx3r= xn4r,2n8,当 n=2 时,若 r=0,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n2;当 n=3 时,若 r=1,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n3;当 n=4 时,若 r=1,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n4;当 n=5 时,r=0 、1、2

20、、3、4、5 时,(1+x+x 2)(x ) n(nN +)的展开式中均没有常数项,故 n=5 适合题意;当 n=6 时,若 r=1,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n6;当 n=7 时,若 r=2,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n7;当 n=8 时,若 r=2,(1+x+x 2)(x ) n(n N+)的展开式中有常数项,故 n2;精选高中模拟试卷第 14 页,共 17 页综上所述,n=5 时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题三、解答题19【答案

21、】【解析】解:()设数列a n的公比为 q,由 a32=9a2a6得 a32=9a42,所以 q2= 由条件可知各项均为正数,故 q= 由 2a1+3a2=1 得 2a1+3a1q=1,所以 a1= 故数列a n的通项式为 an= ()b n= + + =(1+2+ +n)= ,故 = =2( )则 + + =2= ,所以数列 的前 n 项和为 【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前 n 项和的公式,会进行数列的求和运算,是一道中档题20【答案】(1)增函数,证明见解析;(2)最小值为,最大值为 .25【解析】试题分析:(1)在 上任取两个数

22、,则有 ,所以 在2,512x12123()() 0xfxf()fx上是增函数;(2)由(1)知,最小值为 ,最大值为 .,5 5试题解析:在 上任取两个数 ,则有,12x,123()fxf123()x0精选高中模拟试卷第 15 页,共 17 页所以 在 上是增函数()fx2,5所以当 时, ,min()(2)fxf当 时, .a5考点:函数的单调性证明【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数 ,然后作差 ,利用十字相乘法、提公因式法等方法化简式子12x12()fxf成几个因式的乘积,判断最后的结果是大于零韩式小于零

23、,如果小于零,则函数为增函数,如果大于零,则函数为减函数.121【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log 2 +2x,=log2(1 )+2x;y=1 在(1,+)上是增函数,故 y=log2(1 )在(1,+)上是增函数;又y=2x 在(1,+ )上是增函数;h(x)在 x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而 h(1.1)=log 221+2.20,h(2)=log 23+40;故 h(x)在(1,+)上有且仅有一个零点,同理可证 h(x)在(,1)上有且仅有一个零点,故函数 h(x)有两个零点;(2)由题意,关于 x 的方程 f(x

24、)=log 2g(x)有两个不相等实数根可化为1 =2ax+1a 在(,1)(1,+)上有两个不相等实数根;故 a= ;结合函数 a= 的图象可得,a0;即1a0精选高中模拟试卷第 16 页,共 17 页【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题22【答案】 【解析】解:设 g(x)=x 2+2ax+4,由于关于 x 的不等式 x2+2ax+40 对一切 xR 恒成立,函数 g(x)的图象开口向上且与 x 轴没有交点,故=4a 2160,2a 2又 函数 f(x) =(32a) x是增函数,32a 1,得 a1又由于 p 或 q 为真,p 且 q 为假,可知 p 和

25、q 一真一假(1)若 p 真 q 假,则 ,得 1a2;(2)若 p 假 q 真,则 ,得 a2综上可知,所求实数 a 的取值范围为 1a2,或 a223【答案】 【解析】解:(1)EP 与O 相切于点 A,ACB=PAB=25 ,又 BC 是O 的直径,ABC=65 ,精选高中模拟试卷第 17 页,共 17 页四边形 ABCD 内接于O, ABC+D=180,D=115证明:(2)DAE=25,ACD=PAB,D=PBA ,ADCPBA, ,又 DA=BA,DA 2=DCBP24【答案】 【解析】解:(1)函数 f(x)=x 2(a+b)x+3a,当不等式 f(x)0 的解集为1,3 时,方程 x2(a+b )x+3a=0 的两根为 1 和 3,由根与系数的关系得,解得 a=1,b=3;(2)当 b=3 时,不等式 f(x)0 可化为x2( a+3)x+3a0,即(xa)(x 3)0;当 a3 时,原不等式的解集为:x|x3 或 xa;当 a3 时,原不等式的解集为:x|xa 或 x3;当 a=3 时,原不等式的解集为:x|x3,xR【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报