收藏 分享(赏)

汤旺河区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9523542 上传时间:2019-08-12 格式:DOC 页数:15 大小:623.50KB
下载 相关 举报
汤旺河区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共15页
汤旺河区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共15页
汤旺河区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共15页
汤旺河区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共15页
汤旺河区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页汤旺河区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 下列哪组中的两个函数是相等函数( )A B44=fxx, g24=,2xfgxC D1,0, 3,2 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛由于爱好者众多,高三学生队队员指定由 5 班的 6 人、16 班的 8 人、33 班的 10 人按分层抽样构成一个12 人的篮球队首发要求每个班至少 1 人,至多 2 人,则首发方案数为( )A720 B270 C390 D3003 若函数 是偶函数,则函数 的

2、图象的对称轴方程是( )111.Com)1(xfy )(xfyA B C D1xx 2x2x4 已知等差数列 的公差 且 成等比数列,则 ( )A B C D5 ( + ) 2n(nN *)展开式中只有第 6 项系数最大,则其常数项为( )A120 B210 C252 D456 命题“xR ,2x 2+10”的否定是( )AxR ,2x 2+10 BC D7 在 中,若 6A, 45, 32B,则 A( )A 43 B 2 C. 3 D 328 单位正方体(棱长为 1)被切去一部分,剩下部分几何体的三视图如图所示,则( )精选高中模拟试卷第 2 页,共 15 页A该几何体体积为 B该几何体体积

3、可能为C该几何体表面积应为 + D该几何体唯一9 函数 f(x)= x 的图象关于( )Ay 轴对称 B直线 y=x 对称 C坐标原点对称 D直线 y=x 对称10口袋内装有一些大小相同的红球、白球和黒球,从中摸出 1 个球,摸出红球的概率是 0.42,摸出白球的概率是 0.28,那么摸出黒球的概率是( )A0.42 B0.28 C0.3 D0.711复数 Z= (i 为虚数单位)在复平面内对应点的坐标是( )A(1,3) B(1,3) C(3,1) D(2,4)12复数 是虚数单位)的虚部为( )iz(2A B C D-i【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力二

4、、填空题13已知双曲线的标准方程为 ,则该双曲线的焦点坐标为, 渐近线方程为 14已知 ,则函数 的解析式为_.2181fxxfx15已知圆 ,则其圆心坐标是_, 的取值范围是_40Cym: m【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.16已知三棱锥 的四个顶点均在球 的球面上, 和 所在的平面互相垂直,ABDOABCD, , ,则球 的表面积为 .3AB32D17在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四面体 ABCD 的体积的最大值为 18已知 x,y 满足条件 ,则函数 z=2x+y 的最大值是 精选高中模拟试卷第 3 页,共 15 页三

5、、解答题19设函数 f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当 f(x)有最大值,且最大值大于 2a2 时,求 a 的取值范围20为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了 100 名观众进行调查,其中女性有 55 名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数 9 10 11 12 13 14人数 10 18 22 25 20 5将收看该节目场次不低于 13 场的观众称为“歌迷”,已知“歌迷” 中有 10 名女性()根据已知条件完成下面的 22 列联表,并据此资料我们能否有 95%的把握认为“ 歌迷”与性别有关?非歌迷 歌迷 合计

6、男女合计()将收看该节目所有场次(14 场)的观众称为“超级歌迷 ”,已知“超级歌迷” 中有 2 名女性,若从“超级歌迷”中任意选取 2 人,求至少有 1 名女性观众的概率P(K 2k) 0.05 0.01k 3.841 6.635附:K 2= 精选高中模拟试卷第 4 页,共 15 页21(本题满分 12 分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的 50 人进行了问卷调查,得到了如下的 列联表:2患心肺疾病 患心肺疾病 合计男 20 5 25女 10 15 25合计 30 20 50(1)用分层抽样的方法在患心肺疾病的人群中抽 6 人,其中男性抽多少人?(2)在上述抽取的

7、 6 人中选 2 人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量 ,判断心肺疾病与性别是否有关?2K下面的临界值表供参考: )(2kKP15.0.05.2.01.5.01.726384163789(参考公式: ,其中 ))()(dbcabn dcban22已知函数 f(x)= (1)求 f(x)的定义域;(2)判断并证明 f(x)的奇偶性;(3)求证:f( )= f(x)精选高中模拟试卷第 5 页,共 15 页23已知椭圆 的左焦点为 F,离心率为 ,过点 M(0,1)且与 x 轴平行的直线被椭圆 G 截得的线段长为 (I)求椭圆 G 的方程;(II)设动点 P

8、 在椭圆 G 上(P 不是顶点),若直线 FP 的斜率大于 ,求直线 OP(O 是坐标原点)的斜率的取值范围24已知函数 f(x)=4 xa2x+1+a+1,aR (1)当 a=1 时,解方程 f(x )1=0;(2)当 0x1 时,f(x) 0 恒成立,求 a 的取值范围;(3)若函数 f(x)有零点,求实数 a 的取值范围精选高中模拟试卷第 6 页,共 15 页汤旺河区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D111【解析】考点:相等函数的概念.2 【答案】C 解析:高三学生队队员指定由 5 班的 6 人、16 班的 8 人、33

9、班的 10 人按分层抽样构成一个 12 人的篮球队各个班的人数有 5 班的 3 人、16 班的 4 人、33 班的 5 人,首发共有 1、2、2;2、1、2;2、2、1 类型;所求方案有: + + =390故选:C3 【答案】A【解析】试题分析:函数 向右平移个单位得出 的图象,又 是偶函数,对称轴方程)1(xfy )(xfy)1(xfy为 , 的对称轴方程为 .故选 A0x1x考点:函数的对称性.4 【答案】 A【解析】由已知 , , 成等比数列,所以 ,即所以 ,故选 A答案:A精选高中模拟试卷第 7 页,共 15 页5 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项

10、,得到第 6 项系数,根据二项展开式的系数性质得到 n,可求常数项【解答】解:由已知( + ) 2n(n N*)展开式中只有第 6 项系数为 最大,所以展开式有 11 项,所以 2n=10,即 n=5,又展开式的通项为 = ,令 5 =0 解得 k=6,所以展开式的常数项为 =210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出 n,利用通项求特征项6 【答案】C【解析】解:命题xR,2x 2+10 是全称命题,根据全称命题的否定是特称命题得命题的否定是:“ ”,故选:C【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是

11、特称命题,比较基础7 【答案】B【解析】考点:正弦定理的应用.8 【答案】C精选高中模拟试卷第 8 页,共 15 页【解析】解:由已知中三视图可得该几何体是由一个边长为 1 的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为 1该几何体的表面积由三个正方形,有三个两直角边为 1 的等腰直角三角形和一个边长为 的正三角形组成故其表面积 S=3(1 1)+3( 11)+ ( ) 2= 故选:C【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键9 【答案】C【解析】解:f(x)= +x=f(x) 是奇函数,所以 f(x)

12、的图象关于原点对称故选 C10【答案】C【解析】解:口袋内装有一些大小相同的红球、白球和黑球,从中摸出 1 个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是 0.42,摸出白球的概率是 0.28,摸出黑球是摸出红球或摸出白球的对立事件,摸出黑球的概率是 10.420.28=0.3,故选 C【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目11【答案】A【解析】解:复数 Z= = =(1+2i)(1i)=3+i 在复平面内对应点的坐标是(3,1)故选:A【点评】本题考查了复数的

13、运算法则、几何意义,属于基础题12【答案】A精选高中模拟试卷第 9 页,共 15 页【解析】 ,所以虚部为-1,故选 A.12(i)izi二、填空题13【答案】 ( ,0) y=2x 【解析】解:双曲线 的 a=2,b=4,c= =2 ,可得焦点的坐标为( ,0),渐近线方程为 y= x,即为 y=2x故答案为:( ,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题14【答案】 245fxx【解析】试题分析:由题意得,令 ,则 ,则 ,所以函数1tt22(1)8()145fttt的解析式为 .fx2fxx考点:函数的解析式.15【答

14、案】 , . (1,)(,5)【解析】将圆的一般方程化为标准方程, ,圆心坐标 ,22(1)()5ym(1,2)而 , 的范围是 ,故填: , .50m,5,(,)16【答案】6【解析】如图所示, , 为直角,即过 的小圆面的圆心为 的中点 ,22ABCABABCBCO和 所在的平面互相垂直,则球心 O 在过 的圆面上,即 的外接圆为球大圆,由ABC D D D等边三角形的重心和外心重合易得球半径为 ,球的表面积为R2416SR精选高中模拟试卷第 10 页,共 15 页17【答案】 【解析】解:过 CD 作平面 PCD,使 AB平面 PCD,交 AB 与 P,设点 P 到 CD 的距离为 h,

15、则有 V= 2h 2,当球的直径通过 AB 与 CD 的中点时,h 最大为 2 ,则四面体 ABCD 的体积的最大值为 故答案为: 【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力属于基础题18【答案】 4 【解析】解:由约束条件 作出可行域如图,精选高中模拟试卷第 11 页,共 15 页化目标函数 z=2x+y 为 y=2x+z,由图可知,当直线 y=2x+z 过点 A( 2,0)时,直线 y=2x+z 在 y 轴上的截距最大,即 z 最大,此时 z=2(2)+0=4 故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想

16、方法,是中档题三、解答题19【答案】 【解析】解:()f(x)=lnx+a(1x)的定义域为(0 ,+),f(x)= a= ,若 a0,则 f(x)0,函数 f(x)在(0,+)上单调递增,若 a0,则当 x(0, )时, f(x)0,当 x( ,+)时,f(x)0,所以 f(x)在(0, )上单调递增,在( ,+ )上单调递减,(),由()知,当 a0 时,f(x)在(0,+)上无最大值;当 a0 时,f(x)在 x= 取得最大值,最大值为 f( )= lna+a1,f( )2a2,lna+a10,令 g(a)=lna+a 1,g(a)在(0,+)单调递增,g(1)=0,当 0a1 时,g(

17、a )0,当 a1 时,g(a )0,a 的取值范围为(0,1)【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题20【答案】 【解析】解:()由统计表可知,在抽取的 100 人中,“歌迷” 有 25 人,从而完成 22 列联表如下:非歌迷 歌迷 合计男 30 15 45女 45 10 55合计 75 25 100精选高中模拟试卷第 12 页,共 15 页将 22 列联表中的数据代入公式计算,得:K2= = 3.030因为 3.0303.841,所以我们没有 95%的把握认为“ 歌迷”与性别有关()由统计表可知,“超级歌迷”有 5 人,从而一切可能结果所组成的基本事

18、件空间为 =(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)其中 ai表示男性, i=1,2,3,b i表示女性, i=1,2 由 10 个等可能的基本事件组成 用 A 表示“任选 2 人中,至少有 1 个是女性”这一事件,则 A=(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) ,事件 A 由 7 个基本事件组成P(A)= 12【点评】本题考查独立性检验的

19、运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型21【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.22【答案】 精选高中模拟试卷第 13 页,共 15 页【解析】解:(1)1+x 21 恒成立,f (x)的定义域为(,+);(2)f (x)= = =f(x),f( x)为偶函数;(3)f (x)= f( )= = = =f(x)即 f( )=f (x)成立【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础23【

20、答案】 【解析】解:(I)椭圆 的左焦点为 F,离心率为 ,过点 M(0,1)且与 x 轴平行的直线被椭圆 G 截得的线段长为 点 在椭圆 G 上,又离心率为 , ,解得椭圆 G 的方程为 (II)由(I)可知,椭圆 G 的方程为 点 F 的坐标为(1,0)设点 P 的坐标为(x 0,y 0)(x 01,x 00),直线 FP 的斜率为 k,则直线 FP 的方程为 y=k(x+1),由方程组 消去 y0,并整理得 精选高中模拟试卷第 14 页,共 15 页又由已知,得 ,解得 或 1x 00设直线 OP 的斜率为 m,则直线 OP 的方程为 y=mx由方程组 消去 y0,并整理得 由1 x 0

21、0,得 m2 ,x 00,y 00,m0, m( , ),由 x 01,得 ,x 00,y 00,得 m0, m 直线 OP(O 是坐标原点)的斜率的取值范围是( , )( , )【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用24【答案】 【解析】解:(1)a=1 时,f(x)=4 x22x+2,f(x) 1=(2 x) 22(2 x)+1= (2 x1) 2=0,2x=1,解得:x=0 ;(2)4 xa(2 x+11)+10 在(0,1)恒成立,a(22 x1)4 x+1,2x+11,a ,令 2x=t(1, 2),g(t)= ,则 g(t)= = =0,t=t0,g(t)在( 1,t 0)递减,在(t 0,2)递增,精选高中模拟试卷第 15 页,共 15 页而 g(1)=2,g(2)= ,a2;(3)若函数 f(x)有零点,则 a= 有交点,由(2)令 g(t)=0,解得: t= ,故 a 【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报