收藏 分享(赏)

武鸣区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9523480 上传时间:2019-08-12 格式:DOC 页数:16 大小:750KB
下载 相关 举报
武鸣区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共16页
武鸣区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共16页
武鸣区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共16页
武鸣区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共16页
武鸣区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 16 页武鸣区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 从 1、2、3、4、5 中任取 3 个不同的数、则这 3 个数能构成一个三角形三边长的概率为( )A. B.11015C. D.310252 如图所示,在三棱锥 的六条棱所在的直线中,异面直线共有( )111PABCA2 对 B3 对 C4 对 D6 对3 设定义域为(0,+)的单调函数 f(x),对任意的 x(0,+),都有 ff(x) lnx=e+1,若 x0 是方程 f(x) f(x )=e 的一个解,则 x0 可能存在的区间是( )A(0,1

2、) B(e 1,1) C(0,e 1) D(1,e)4 已知 表示数列 的前 项和,若对任意的 满足 ,且 ,则 ( )A BC D5 已知点 A(0,1),B(2,3)C (1,2),D(1,5),则向量 在 方向上的投影为( )A B C D6 已知 M 是ABC 内的一点,且 =2 ,BAC=30 ,若MBC ,MCA 和MAB 的面积分别为 ,x,y,则 + 的最小值是( )A20 B18 C16 D9精选高中模拟试卷第 2 页,共 16 页7 已知 f(x)为定义在(0 ,+ )上的可导函数,且 f(x)xf (x)恒成立,则不等式 x2f( ) f(x)0 的解集为( )A(0,1

3、) B(1,2) C(1,+) D(2,+)8 已知函数 ( ),若数列 满足1()sin,1()2,2xnfx nNma,数列 的前 项和为 ,则 ( )*()mafNmamS10596SA. B. C. D.909091【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.9 对一切实数 x,不等式 x2+a|x|+10 恒成立,则实数 a 的取值范围是( )A(,2) B D上是减函数,那么 b+c( )A有最大值 B有最大值 C有最小值 D有最小值10集合 的真子集共有( )1,3A个 B个 C个 D个11如果 3 个正整数可作为一个直角三角形三条边的边长,

4、则称这 3 个数为一组勾股数从 1,2,3,4,5中任取 3 个不同的数,则这 3 个数构成一组勾股数的概率为( )A B C D12已知等比数列a n的第 5 项是二项式(x+ ) 4 展开式的常数项,则 a3a7( )A5 B18 C24 D36二、填空题13为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量 y(毫克)与时间 t(小时)成正比;药物释放完毕后,y 与 t 的函数关系式为 y=( ) ta (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到 0.25 毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,

5、学生才能回到教室精选高中模拟试卷第 3 页,共 16 页14命题“ (0,)2x, sin1x”的否定是 15已知 为抛物线 上两个不同的点, 为抛物线的焦点若线段 的中点的纵坐标为 2,MN、24yFMN,则直线 的方程为_.|1F16抛物线 y= x2 的焦点坐标为( )A(0, ) B( , 0) C(0,4) D(0,2)17三角形 中, ,则三角形 的面积为 .C3,6AABC18如图,在长方体 ABCDA1B1C1D1 中,AB=5,BC=4 , AA1=3,沿该长方体对角面 ABC1D1 将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 三、解答题19

6、(本小题满分 12 分)一个盒子里装有编号为 1、2、3、4、5 的五个大小相同的小球,第一次从盒子里随机抽取 2 个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取 2 个小球,记下球的编号()求第一次或第二次取到 3 号球的概率;()设 为两次取球时取到相同编号的小球的个数,求 的分布列与数学期望 精选高中模拟试卷第 4 页,共 16 页20(本小题满分 12 分)设 f(x )x 2axa 2ln x(a0)(1)讨论 f(x )的单调性;(2)是否存在 a0,使 f( x)e1,e 2对于 x1 ,e 时恒成立,若存在求出 a 的值,若不存在说明理由21已知 Sn 为等差

7、数列a n的前 n 项和,且 a4=7,S 4=16(1)求数列a n的通项公式;(2)设 bn= ,求数列b n的前 n 项和 Tn22 (本题满分 12 分)在如图所示的几何体中,四边形 为矩形,直线 平面 ,ABCDAFBCD,ABEF/,点 在棱 上.12,2EFDPDF(1)求证: ;(2)若 是 的中点,求异面直线 与 所成角的余弦值;PBE(3)若 ,求二面角 的余弦值.31CA精选高中模拟试卷第 5 页,共 16 页23某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取 40 名学生的测试成绩,整理数据并按分数段 , , , , , 进行分组,假设同一组中的每个数据可

8、用该组区间的中点值代替,则得到体育成绩的折线图(如下)()体育成绩大于或等于 70 分的学生常被称为“体育良好”已知该校高一年级有 1000 名学生,试估计高一年级中“体育良好”的学生人数;()为分析学生平时的体育活动情况,现从体育成绩在 和 的样本学生中随机抽取 2 人,求在抽取的 2 名学生中,至少有 1 人体育成绩在 的概率;()假设甲、乙、丙三人的体育成绩分别为 ,且分别在 , , 三组中,其中当数据 的方差 最大时,写出 的值(结论不要求证明)(注: ,其中 为数据 的平均数)精选高中模拟试卷第 6 页,共 16 页24设函数 ,若对于任意 x1,2都有 f(x)m 成立,求实数 m

9、 的取值范围精选高中模拟试卷第 7 页,共 16 页武鸣区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】【解析】解析:选 C.从 1、2 、3、4、5 中任取 3 个不同的数有下面 10 个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率 P .3102 【答案】B【解析】试题分析:三棱锥 中,则 与 、 与 、 与 都是异面直线,所以共有三对

10、,故ABCPBCAPBC选 B考点:异面直线的判定3 【答案】 D【解析】解:由题意知:f( x)lnx 为常数,令 f(x)lnx=k(常数),则 f(x)=lnx+k由 ff( x) lnx=e+1,得 f(k)=e+1,又 f(k)=lnk+k=e+1,所以 f(x)=lnx+e,f(x)= ,x0f(x) f(x) =lnx +e,令 g(x)=lnx +e=lnx ,x (0,+)可判断:g(x)=lnx ,x(0,+)上单调递增,g(1)= 1,g(e )=1 0,x 0(1,e), g(x 0)=0,x 0 是方程 f(x)f(x)=e 的一个解,则 x0 可能存在的区间是(1,

11、e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题4 【答案】 C【解析】精选高中模拟试卷第 8 页,共 16 页令 得 ,所以 ,即 ,所以 是以 1 为公差的等差数列,首项为,所以 ,故选 C答案:C5 【答案】D【解析】解: ; 在 方向上的投影为 = = 故选 D【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算6 【答案】B【解析】解:由已知得 =bccosBAC=2 bc=4,故 SABC =x+y+ = bcsinA=1x+y= ,而 + =2( + ) (x+y )=2(5+ + )

12、2(5+2 )=18,故选 B【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算要注意灵活利用 y=ax+ 的形式7 【答案】C【解析】解:令 F(x)= ,(x0),则 F(x )= ,f( x) xf(x),F (x) 0,F( x)为定义域上的减函数,精选高中模拟试卷第 9 页,共 16 页由不等式 x2f( )f(x) 0,得: , x, x1,故选:C8 【答案】A. 【解析】9 【答案】B【解析】解:由 f(x)在上是减函数,知f(x)=3x 2+2bx+c0,x,则15+2b+2c0b+c 故选 B精选高中模拟试卷第 10 页,共 16 页10【答案】C【解析

13、】考点:真子集的概念.11【答案】C【解析】解:从 1,2,3,4,5 中任取 3 个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共 10 种,其中只有(3,4,5)为勾股数,故这 3 个数构成一组勾股数的概率为 故选:C12【答案】D【解析】解:二项式(x+ ) 4 展开式的通项公式为 Tr+1= x42r,令 42r=0,解得 r=2,展开式的常数项为 6=a5,a 3a7=a52=36,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中

14、某项的系数,属于中档题二、填空题13【答案】0.6【解析】解:当 t0.1 时,可得 1=( ) 0.1a0.1a=0a=0.1由题意可得 y0.25= ,即( ) t0.1 ,精选高中模拟试卷第 11 页,共 16 页即 t0.1解得 t0.6,由题意至少需要经过 0.6 小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案14【答案】 0,2x, sin1【解析】试题分析:“(,)x, six”的否定是 0,2x, sin1考点:命题否定【方法点睛】(1)对全称(存在性)命题进行否定的两步操作

15、:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;对原命题的结论进行否定.(2)判定全称命题“xM,p(x)”是真命题,需要对集合 M 中的每个元素 x,证明 p(x)成立;要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值 x0,使 p(x 0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个 xx 0,使 p(x 0)成立即可,否则就是假命题.15【答案】 2y【解析】解析: 设 ,那么 , ,线段12(,)(,)Ny、 12| 0MFNx128x的中点坐标为 .由 , 两式相减得 ,而 ,N41x24()4()yy12y ,直线 的方程为

16、,即 .12yxM16【答案】D【解析】解:把抛物线 y= x2 方程化为标准形式为 x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键17【答案】 23【解析】精选高中模拟试卷第 12 页,共 16 页试题分析:因为 中, ,由正弦定理得 , ,又ABC23,60BC23sinA1i2,即 ,所以 , , , BC09ABC132ASBC考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现 及 、 时,往往用

17、余弦定理,而题设中如果边和ab2正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式 , , , 等等1sinCah1()2bcr4aR18【答案】 114 【解析】解:根据题目要求得出:当 53 的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题三、解答题19【答案】 【解析】解:()事件“第一次或第二次取到 3 号球的概率”的对立事件为“二次取球都

18、没有取到 3 号球”精选高中模拟试卷第 13 页,共 16 页, 所求概率为 (6 分)24511CP() , , ,(9 分)0,32()01235()CP251()0CP故 的分布列为:(10 分)0 1 2P 350 (12 分)14021E20【答案】【解析】解:(1)f(x )x 2axa 2ln x 的定义域为x|x0,f(x)2xaa2x . 2(x a2)(x a)x当 a0 时,由 f(x )0 得 x ,a2由 f(x)0 得 0x .a2此时 f(x)在( 0, )上单调递增,a2在( ,)上单调递减;a2当 a0 时,由 f(x )0 得 xa,由 f(x)0 得 0x

19、a,此时 f(x)在( 0,a)上单调递增,在(a,)上单调递减(2)假设存在满足条件的实数 a,x1,e 时,f(x )e 1,e 2,f(1)1ae1,即 ae,由(1)知 f(x )在(0,a)上单调递增,精选高中模拟试卷第 14 页,共 16 页f(x)在1,e上单调递增,f(e)e 2ae e 2e2,即 ae ,由可得 ae,故存在 ae,满足条件21【答案】 【解析】解:(1)设等差数列a n的公差为 d,依题意得 (2 分)解得:a 1=1,d=2a n=2n1(2)由得 (7 分) (11 分) (12 分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法

20、求和的应用,属于中档题22【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.精选高中模拟试卷第 15 页,共 16 页(3)因为 平面 ,所以平面 的一个法向量 .由 知 为 的三等分点ABDFAF)0,1(nFDP31且此时 .在平面 中, , .所以平面 的一个法向量)32,0(PPC)32,0(2ACAC.10 分12n所以 ,又因为二面角 的大小为锐角,所以该二面角的余弦值为36|,cos| 212nPD.12 分3623【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】()由

21、折线图,知样本中体育成绩大于或等于 70 分的学生有 人,所以该校高一年级学生中,“体育良好”的学生人数大约有精选高中模拟试卷第 16 页,共 16 页人 ()设 “至少有 1 人体育成绩在 ”为事件 ,记体育成绩在 的数据为 , ,体育成绩在 的数据为 , , ,则从这两组数据中随机抽取 2 个,所有可能的结果有 10 种,它们是: , , , , , , , , 而事件 的结果有 7 种,它们是: , , , , , , ,因此事件 的概率 ()a,b,c 的值分别是为 , , 24【答案】 【解析】解: ,f(x)=3x 2x2=(3x+2)(x1),当 x1, ),(1,2时,f(x)0;当 x( ,1)时,f (x) 0;f(x)在 1, ),(1, 2上单调递增,在( ,1)上单调递减;且 f( )= +2 +5=5+ ,f(2)=8 422+5=7;故 fmax(x)=f(2)=7;故对于任意 x1,2都有 f( x)m 成立可化为 7m;故实数 m 的取值范围为(7, +)【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报