1、精选高中模拟试卷第 1 页,共 14 页惠来县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 在正方体 中, 是线段 的中点,若四面体 的外接球体积为 ,1ABCD-M1ACMABD-36p则正方体棱长为( )A2 B3 C4 D5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力2 已知实数 a,b,c 满足不等式 0a bc1,且 M=2a,N=5 b ,P=( ) c,则 M、N 、P 的大小关系为( )AMNP BPMN CNPM3 已知 a=log23,b=8 0.4,c=sin ,则
2、a,b,c 的大小关系是( )Aabc Ba cb Cba c Dcba4 已知函数 f(x)是定义在 R 上的奇函数,当 x0 时, .若,f(x-1)f(x),则实数 a 的取值范围为A B C D 5 已知 f(x)是定义在 R 上周期为 2 的奇函数,当 x(0,1)时,f(x)=3 x1,则 f(log 35)=( )A B C4 D6 已知直线 与圆 交于 两点, 为直线 上任310mxy: 2()4Cxy: AB、 P340nxy:意一点,则 的面积为( )PA B. C. D. 2233精选高中模拟试卷第 2 页,共 14 页7 如图,函数 f(x)=Asin(2x+)(A0,
3、| | )的图象过点(0, ),则 f(x)的图象的一个对称中心是( )A( ,0) B( , 0) C( ,0) D( ,0)8 函数 f(x)=x 33x2+5 的单调减区间是( )A(0,2) B(0,3 ) C(0,1) D(0,5)9 已知| |=3,| |=1, 与 的夹角为 ,那么| 4 |等于( )A2 B C D1310已知函数 f(x)是 R 上的奇函数,且当 x0 时,f(x)=x 32x2,则 x0 时,函数 f(x)的表达式为f(x)=( )Ax 3+2x2 Bx 32x2 C x3+2x2 Dx 32x211 若 ,则下列不等式一定成立的是( )A BC D12A=
4、x|x1,B=x|x 2 或 x0 ,则 AB=( )A(0,1) B( ,2)C(2, 0) D(,2)(0,1)二、填空题13一个正四棱台,其上、下底面均为正方形,边长分别为 2cm和 4,侧棱长为2cm,则其表面积为_ 2cm.精选高中模拟试卷第 3 页,共 14 页14若数列a n满足:存在正整数 T,对于任意的正整数 n,都有 an+T=an 成立,则称数列a n为周期为 T 的周期数列已知数列a n满足: a1=m (ma ),a n+1= ,现给出以下三个命题:若 m= ,则 a5=2;若 a3=3,则 m 可以取 3 个不同的值;若 m= ,则数列a n是周期为 5 的周期数列
5、其中正确命题的序号是 15函数 2logfx在点 1,A处切线的斜率为 16曲线 y=x+ex 在点 A(0,1)处的切线方程是 171785 与 840 的最大约数为 18(本小题满分 12 分)点 M(2pt,2pt 2)(t 为常数,且 t0)是拋物线 C:x 22py(p0)上一点,过M 作倾斜角互补的两直线 l1 与 l2 与 C 的另外交点分别为 P、Q.(1)求证:直线 PQ 的斜率为 2t;(2)记拋物线的准线与 y 轴的交点为 T,若拋物线在 M 处的切线过点 T,求 t 的值三、解答题19在ABC 中,内角 A,B,C 的对边分别为 a、b、c,且 bsinA= acosB
6、(1)求 B;(2)若 b=2,求ABC 面积的最大值20(本小题满分 12 分)设 03, ,满足 6sin2cos3(1)求 cos的值;精选高中模拟试卷第 4 页,共 14 页(2)求 cos21的值21已知 f(x)=x 2(a+b )x+3a(1)若不等式 f(x)0 的解集为1,3 ,求实数 a,b 的值;(2)若 b=3,求不等式 f(x)0 的解集22在平面直角坐标系中,ABC 各顶点的坐标分别为:A(0,4);B( 3,0),C(1,1)(1)求点 C 到直线 AB 的距离;(2)求 AB 边的高所在直线的方程23已知等差数列a n,等比数列 bn满足:a 1=b1=1,a
7、2=b2,2a 3b3=1()求数列a n,b n的通项公式;()记 cn=anbn,求数列c n的前 n 项和 Sn精选高中模拟试卷第 5 页,共 14 页24已知 p:2x 23x+10,q: x2(2a+1)x+a(a+1)0(1)若 a= ,且 pq 为真,求实数 x 的取值范围(2)若 p 是 q 的充分不必要条件,求实数 a 的取值范围精选高中模拟试卷第 6 页,共 14 页惠来县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C2 【答案】A【解析】解:0abc 1,12 a2, 5 b 1, ( ) c1,5b =( ) b(
8、) c( ) c,即 MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键3 【答案】B【解析】解:1log 232,0 8 0.4=21.2 ,sin =sin ,acb,故选:B【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键4 【答案】 B【解析】当 x0 时,f(x)= ,由 f(x )=x3a 2,x 2a 2,得 f(x )a 2;当 a2x2a 2时,f (x)=a 2;由 f(x )=x ,0xa 2,得 f(x )a 2。精选高中模拟试卷第 7 页,共 14 页当 x0 时
9、, 。函数 f(x)为奇函数,当 x0 时, 。对 xR,都有 f(x1 )f(x),2a2(4a 2)1,解得: 。故实数 a 的取值范围是 。5 【答案】B【解析】解:f(x)是定义在 R 上周期为 2 的奇函数,f( log35)=f (log 352)=f(log 3 ),x (0,1)时,f(x)=3 x1f( log3 )故选:B6 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心 到直线 的距离 , ,两平行直线 之间的距离为 ,m1d2| 3ABrdmn、 3d的面积为 ,选 CPAB|327 【答案】 B【解析】解:由函数图象可知:A=
10、2,由于图象过点(0, ),可得:2sin= ,即 sin= ,由于| | ,解得:= ,即有:f(x)=2sin(2x+ )由 2x+ =k, kZ 可解得:x= ,kZ,故 f(x)的图象的对称中心是:( ,0),kZ精选高中模拟试卷第 8 页,共 14 页当 k=0 时,f (x)的图象的对称中心是:( ,0),故选:B【点评】本题主要考查由函数 y=Asin(x+ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题8 【答案】A【解析】解:f(x)=x 33x2+5,f(x)=3x 26x,令 f(x)0,解得: 0x2,故选:A【点评】本题考察了函数的单调性,导数的应用,是一道
11、基础题9 【答案】C【解析】解:| |=3,| |=1, 与 的夹角为 ,可得 =| | |cos , =3 1 = ,即有| 4 |= = 故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题10【答案】A【解析】解:设 x0 时,则x0,因为当 x0 时,f(x)=x 32x2 所以 f( x)= ( x) 32(x ) 2=x32x2,又因为 f(x)是定义在 R 上的奇函数,所以 f(x)=f(x),所以当 x0 时,函数 f(x)的表达式为 f(x)=x 3+2x2, 故选 A11【答案】D【解析】因为 , 有可能为负值,所以排除 A
12、,C ,因为函数 为减函数且 ,所以 ,排除B,故选 D精选高中模拟试卷第 9 页,共 14 页答案:D12【答案】D【解析】解:A=( ,1),B=( ,2)(0,+ ),AB=( , 2)(0,1 ),故选:D【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键二、填空题13【答案】 1230【解析】考点:棱台的表面积的求解.14【答案】 【解析】解:对于由 an+1= ,且 a1=m= 1,所以, 1, , ,a 5=2 故正确;对于由 a3=3,若 a3=a21=3,则 a2=4,若 a11=4,则 a1=5=m若 ,则 精选高中模拟试卷第 10 页,共 14 页若 a11
13、a 1= ,若 0a 11 则 a1=3,不合题意所以,a 3=2 时,m 即 a1 的不同取值由 3 个故正确;若 a1=m= 1,则 a2= ,所 a3= 1,a4=故在 a1= 时,数列a n是周期为 3 的周期数列,错;故答案为:【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目15【答案】1ln2【解析】试题分析:1lln2fxkf 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点 P 的切线”与“在点 P 处的切线”的差异,过点 P 的切线中,点 P 不一定是切点,点 P 也不一定在已知曲线上,而在点 P 处的切线,必以
14、点 P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.16【答案】 2xy+1=0 【解析】解:由题意得,y=(x+e x)=1+e x,点 A(0,1)处的切线斜率 k=1+e0=2,则点 A(0,1)处的切线方程是 y1=2x,即 2xy+1=0,故答案为:2xy+1=0【点评】本题考查导数的几何意义,以及利用点斜式方程求切线方程,注意最后要用一般式方程来表示,属于基础题17【答案】 105 【解析】解:1785=8402+105,84
15、0=1058+0 840 与 1785 的最大公约数是 105精选高中模拟试卷第 11 页,共 14 页故答案为 10518【答案】【解析】解:(1)证明:l 1 的斜率显然存在,设为 k,其方程为 y2pt 2k(x2pt)将与拋物线 x22py 联立得,x22pkx4p 2t(kt)0,解得 x12pt, x22p(kt),将 x22p(kt )代入 x22py 得 y22p(kt) 2,P 点的坐标为(2p(kt), 2p(kt) 2)由于 l1 与 l2 的倾斜角互补,点 Q 的坐标为(2p(kt),2p(kt) 2),kPQ 2t,2p( k t)2 2p(k t)22p( k t)
16、 2p(k t)即直线 PQ 的斜率为2t.(2)由 y 得 y ,x22pxp拋物线 C 在 M(2pt,2pt 2)处的切线斜率为 k 2t.2ptp其切线方程为 y2pt 22t(x2pt ),又 C 的准线与 y 轴的交点 T 的坐标为( 0, )p2 2pt22t(2pt)p2解得 t ,即 t 的值为 .1212三、解答题19【答案】 【解析】(本小题满分 12 分)解:(1)bsinA= ,由正弦定理可得:sinBsinA= sinAcosB,即得 tanB= ,B= 精选高中模拟试卷第 12 页,共 14 页(2)ABC 的面积 由已知及余弦定理,得 又 a2+c22ac,故
17、ac4,当且仅当 a=c 时,等号成立因此ABC 面积的最大值为 20【答案】(1) 104;(2) 3028【解析】试题分析:(1)由 6sincos 6sin4,又 03, 62,10cos4;(2)由(1)可得 212cos3415sin2342coscosinsi3443 08试题解析:(1) 6in2, 6i,3 分 03, , , , 10cos46 分(2)由(1)可得22cos2368 分 03, , , , 15sin3410 分 cos2cos2co2cosin2si134340812 分考点:三角恒等变换21【答案】 【解析】解:(1)函数 f(x)=x 2(a+b)x+
18、3a,当不等式 f(x)0 的解集为1,3 时,方程 x2(a+b )x+3a=0 的两根为 1 和 3,由根与系数的关系得,精选高中模拟试卷第 13 页,共 14 页解得 a=1,b=3;(2)当 b=3 时,不等式 f(x)0 可化为x2( a+3)x+3a0,即(xa)(x 3)0;当 a3 时,原不等式的解集为:x|x3 或 xa;当 a3 时,原不等式的解集为:x|xa 或 x3;当 a=3 时,原不等式的解集为:x|x3,xR【点评】本题考查了含有字母系数的一元二次不等式的解法和应用问题,是基础题目22【答案】 【解析】解(1) ,根据直线的斜截式方程,直线 AB: ,化成一般式为
19、:4x3y+12=0 ,根据点到直线的距离公式,点 C 到直线 AB 的距离为 ;(2)由(1)得直线 AB 的斜率为 ,AB 边的高所在直线的斜率为 ,由直线的点斜式方程为: ,化成一般式方程为:3x+4y7=0 ,AB 边的高所在直线的方程为 3x+4y7=023【答案】 【解析】解:(I)设等差数列 an的公差为 d,等比数列b n的公比为 q: a1=b1=1,a 2=b2,2a 3b3=11+d=q,2(1+2d)q 2=1,解得 或 an=1,b n=1;或 an=1+2(n1 )=2n 1,b n=3n1(II)当 时,c n=anbn=1,S n=n当 时,c n=anbn=(
20、2n 1)3 n1,Sn=1+33+532+(2n1)3 n1,3Sn=3+332+(2n3)3 n1+(2n 1)3 n,精选高中模拟试卷第 14 页,共 14 页2Sn=1+2(3+3 2+3n1) (2n1)3 n= 1(2n 1)3 n=(22n)3 n2,Sn=( n1)3 n+1【点评】本题考查了等差数列与等比数列的通项公式及其前 n 项和公式、“错位相减法” ,考查了推理能力与计算能力,属于中档题24【答案】 【解析】解:p: ,q:ax a+1;(1)若 a= ,则 q: ;pq 为真,p,q 都为真; , ;实数 x 的取值范围为 ;(2)若 p 是 q 的充分不必要条件,即由 p 能得到 q,而由 q 得不到 p; , ;实数 a 的取值范围为 【点评】考查解一元二次不等式,pq 真假和 p,q 真假的关系,以及充分不必要条件的概念