1、精选高中模拟试卷第 1 页,共 17 页原阳县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 下面茎叶图表示的是甲、乙两个篮球队在 3 次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以 m 表示若甲队的平均得分不低于乙队的平均得分,那么 m 的可能取值集合为( )A B C D2 设 f(x)( ex e x)( ),则不等式 f(x)f(1x)的解集为( )12x 112A(0,) B(, )12C( ,) D( ,0)12123 已知函数 f(x)是(,0)(0,+ )上的奇函数,且当 x0 时,函数的部分图象如图所示,则不等式
2、xf(x)0 的解集是( )A(2 , 1)(1,2) B( 2,1)(0,1) (2,+ )C(,2)(1,0)(1,2) D(,2)(1,0)(0,1)(2,+)4 设数列a n的前 n 项和为 Sn,若 Sn=n2+2n(nN *),则 + + =( )A B C D5 执行如图所示的程序框图,若 a=1,b=2,则输出的结果是( )精选高中模拟试卷第 2 页,共 17 页A9 B11 C13 D156 某个几何体的三视图如图所示,该几何体的表面积为 9214,则该几何体的体积为( )A8020B4020C6010D80107 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上
3、若圆锥底面面积是球面面积的 ,则这两个圆锥的体积之比为( )A2:1 B5:2 C1:4 D3:18 将函数 f(x)=sin2x 的图象向右平移 个单位,得到函数 y=g(x)的图象,则它的一个对称中心是( )A B C D9 如图,该程序运行后输出的结果为( )精选高中模拟试卷第 3 页,共 17 页A7 B15 C31 D6310从 1、2、3、4、5 中任取 3 个不同的数、则这 3 个数能构成一个三角形三边长的概率为( )A. B.11015C. D.3102511下列关系正确的是( )A10,1 B1 0,1 C10,1 D1 0,112将函数 ( )的图象沿 轴向左平移 个单位后
4、,得到一个偶函数的图象,则 的sin2yx0x8最小值为( )(A) ( B ) (C) 43834(D) 8二、填空题13某种产品的加工需要 A,B,C,D,E 五道工艺,其中 A 必须在 D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与 C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种(用数字作答)14如果直线 3ax+y1=0 与直线(1 2a)x+ay+1=0 平行那么 a 等于 15S n= + + = 精选高中模拟试卷第 4 页,共 17 页16如图,正方形 的边长为 1 ,它是水平放置的一个平面图形的直观图,则原图的OABC
5、cm周长为 111117已知直线 l 的参数方程是 (t 为参数),曲线 C 的极坐标方程是 =8cos+6sin,则曲线 C 上到直线 l 的距离为 4 的点个数有 个18如果椭圆 + =1 弦被点 A(1,1)平分,那么这条弦所在的直线方程是 三、解答题19求点 A(3,2)关于直线 l:2x y1=0 的对称点 A的坐标20已知数列a n和b n满足 a1a2a3an=2 (n N*),若a n为等比数列,且 a1=2,b 3=3+b2(1)求 an和 bn;(2)设 cn= (nN *),记数列c n的前 n 项和为 Sn,求 Sn精选高中模拟试卷第 5 页,共 17 页21如图,已知
6、 AC,BD 为圆 O 的任意两条直径,直线 AE,CF 是圆 O 所在平面的两条垂线,且线段AE=CF= ,AC=2 ()证明 ADBE;()求多面体 EFABCD 体积的最大值22 (本题满分 12 分)在如图所示的几何体中,四边形 为矩形,直线 平面 ,ABCDAFBCD,ABEF/,点 在棱 上.12,2EFDPDF(1)求证: ;(2)若 是 的中点,求异面直线 与 所成角的余弦值;PBE(3)若 ,求二面角 的余弦值.31CA精选高中模拟试卷第 6 页,共 17 页23数列a n满足 a1= ,a n( , ),且 tanan+1cosan=1(nN *)()证明数列tan 2an
7、是等差数列,并求数列tan 2an的前 n 项和;()求正整数 m,使得 11sina1sina2sinam=124已知函数 f(x)=ax 22lnx()若 f(x)在 x=e 处取得极值,求 a 的值;()若 x(0,e,求 f( x)的单调区间;() 设 a ,g(x)=5+ln , x1,x 2(0,e,使得 |f(x 1) g(x 2)|9 成立,求 a 的取值范围精选高中模拟试卷第 7 页,共 17 页原阳县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以 m 可以取:
8、0,1,2故答案为:C2 【答案】【解析】选 C.f(x)的定义域为 xR ,由 f(x)(e x e x)( )得12x 112f(x)(e xe x )( )12 x 112(e xe x )( ) 12x 112(e x e x)( )f(x ),12x 112f(x)在 R 上为偶函数,不等式 f(x)f(1x )等价于 |x|1 x|,即 x212xx 2, x ,12即不等式 f(x) f(1x )的解集为 x|x ,故选 C.123 【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式 xf(x)0 的解为: 或解得:x(, 2)(1,0)(0,1)
9、(2,+)故选:D精选高中模拟试卷第 8 页,共 17 页4 【答案】D【解析】解:S n=n2+2n(n N*),当 n=1 时,a 1=S1=3;当 n2 时,a n=SnSn1=(n 2+2n)(n1)2+2(n 1)=2n+1 = = , + + = + += 故选:D【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题5 【答案】C【解析】解:当 a=1 时,不满足退出循环的条件,故 a=5,当 a=5 时,不满足退出循环的条件,故 a=9,当 a=9 时,不满足退出循环的条件,故 a=13,当 a=13 时,满足退出循环的条件,故输出的结果为 13,故
10、选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答6 【答案】【解析】解析:选 D.该几何体是在一个长方体的上面放置了半个圆柱依题意得(2r2r r2)252r252r r59214 ,12即(8)r 2(305)r(9214 )0,即(r2)(8)r467 0,精选高中模拟试卷第 9 页,共 17 页r2,该几何体的体积为(44 22)58010.127 【答案】D【解析】解:设球的半径为 R,圆锥底面的半径为 r,则 r2= 4R2= ,r= 球心到圆锥底面的距离为 = 圆锥的高分别为 和 两个圆锥的体积比为 : =1:3故选:D8 【答案】D
11、【解析】解:函数 y=sin2x 的图象向右平移 个单位,则函数变为 y=sin2(x )=sin(2x );考察选项不难发现:当 x= 时,sin(2 )=0;( ,0)就是函数的一个对称中心坐标故选:D【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型9 【答案】如图,该程序运行后输出的结果为( )D【解析】解:因为 A=1,s=1判断框内的条件 15 成立,执行 s=21+1=3,i=1+1=2;判断框内的条件 25 成立,执行 s=23+1=7,i=2+1=3;判断框内的条件 35 成立,执行 s=27+1=15,i=3+1=
12、4;判断框内的条件 45 成立,执行 s=215+1=31,i=4+1=5;判断框内的条件 55 成立,执行 s=231+1=63,i=5+1=6;此时 65,判断框内的条件不成立,应执行否路径输出 63,所以输入的 m 值应是 5故答案为 5精选高中模拟试卷第 10 页,共 17 页【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束10【答案】【解析】解析:选 C.从 1、2 、3、4、5 中任取 3 个不同的数有下面 10 个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2
13、,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率 P .31011【答案】B【解析】解:由于 10,1,1 0,1 ,故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键12【答案】B 【解析】将函数 的图象沿 轴向左平移 个单位后,得到一个偶函数()sin20yxx8的图象,可得 ,求得 的最小值为 ,故选 Bsin284()yx42 4二、填空题13【答案】 24 【解析】解:由题意,B 与 C 必须相邻,利用捆绑
14、法,可得 =48 种方法,因为 A 必须在 D 的前面完成,所以完成加工该产品的不同工艺的排列顺序有 482=24 种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础14【答案】 【解析】解:直线 3ax+y1=0 与直线(1 2a)x+ay+1=0 平行,精选高中模拟试卷第 11 页,共 17 页3aa=1(12a),解得 a=1 或 a= ,经检验当 a=1 时,两直线重合,应舍去故答案为: 【点评】本题考查直线的一般式方程和平行关系,属基础题15【答案】 【解析】解: = = ( ),Sn= + += (1 )+( )+( )+ ( )= (1 )= ,故答案
15、为: 【点评】本题主要考查利用裂项法进行数列求和,属于中档题16【答案】 8cm【解析】考点:平面图形的直观图17【答案】 2 【解析】解:由 ,消去 t 得:2x y+5=0,精选高中模拟试卷第 12 页,共 17 页由 =8cos+6sin,得 2=8cos+6sin,即 x2+y2=8x+6y,化为标准式得(x4) 2+(y3) 2=25,即 C 是以(4,3)为圆心,5 为半径的圆又圆心到直线 l 的距离是 ,故曲线 C 上到直线 l 的距离为 4 的点有 2 个,故答案为:2【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题
16、18【答案】 x+4y 5=0 【解析】解:设这条弦与椭圆 + =1 交于 P(x 1,y 1), Q(x 2,y 2),由中点坐标公式知 x1+x2=2,y 1+y2=2,把 P(x 1,y 1),Q(x 2,y 2)代入 x2+4y2=36,得 ,得 2( x1x2)+8(y 1y2)=0,k= = ,这条弦所在的直线的方程 y1= (x 1),即为 x+4y5=0,由(1,1)在椭圆内,则所求直线方程为 x+4y5=0故答案为:x+4y 5=0【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键三、解答题19【答案】 【解析】解:设点 A(3,2)关于直线
17、l:2x y1=0 的对称点 A的坐标为(m ,n),则线段 AA 的中点 B( , ),精选高中模拟试卷第 13 页,共 17 页由题意得 B 在直线 l:2x y1=0 上,故 2 1=0 再由线段 AA 和直线 l 垂直,斜率之积等于1 得 =1 ,解做成的方程组可得:m= ,n= ,故点 A的坐标为( , )【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件20【答案】 【解析】解:(1)设等比数列a n的公比为 q,数列a n和b n满足 a1a2a3an=2 (nN *),a1=2, , , ,b 1=1, =2q0, =2q2,又 b3=3+b
18、22 3=2q2,解得 q=2a n=2n =a1a2a3an=2222n= , (2)c n= = = =,数列c n的前 n 项和为 Sn= += 2精选高中模拟试卷第 14 页,共 17 页= 2+= 1【点评】本题考查了等差数列与等比数列的通项公式及其前 n 项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题21【答案】 【解析】()证明:BD 为圆 O 的直径,ABAD ,直线 AE 是圆 O 所在平面的垂线,ADAE ,ABAE=A,AD平面 ABE,ADBE;()解:多面体 EFABCD 体积 V=VBAEFC+VDAEFC=2VBAEFC直线 AE,CF
19、 是圆 O 所在平面的两条垂线,AECF ,AEAC,AFACAE=CF= ,AEFC 为矩形,AC=2,S AEFC=2 ,作 BMAC 交 AC 于点 M,则 BM平面 AEFC,V=2V BAEFC=2 = 多面体 EFABCD 体积的最大值为 【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等22【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑精选高中模拟试卷第 15 页,共 17 页推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为 平面 ,所以平面 的一个法向量 .由 知 为 的三等
20、分点ABDFAF)0,1(nFDP31且此时 .在平面 中, , .所以平面 的一个法向量)32,0(PPC)32,0(2ACAC.10 分12n所以 ,又因为二面角 的大小为锐角,所以该二面角的余弦值为36|,cos| 212nPD.12 分3623【答案】 【解析】()证明:对任意正整数 n,a n( , ),且 tanan+1cosan=1(nN *)精选高中模拟试卷第 16 页,共 17 页故 tan2an+1= =1+tan2an,数列tan 2an是等差数列,首项 tan2a1= ,以 1 为公差 = 数列tan 2an的前 n 项和= + = ()解:cosa n0,tana n
21、+10, tana n= , ,sina 1sina2sinam=(tana 1cosa1)(tana 2cosa2)(tana mcosam)=(tana 2cosa1) (tana 3cosa2) (tana mcosam1)(tana 1cosam)=(tana 1cosam)= = ,由 ,得 m=40【点评】本题考查了等差数列的通项公式及其前 n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题24【答案】 【解析】解:() f(x)=2ax = 由已知 f(e)=2ae =0,解得 a= 经检验,a= 符合题意 () 1)当 a0 时,f(x)0,f (x)在(0,e上是减函数2)当 a0 时,若 e,即 ,则 f(x)在(0, )上是减函数,在( ,e上是增函数;精选高中模拟试卷第 17 页,共 17 页若 e,即 0a ,则 f(x)在0 ,e上是减函数综上所述,当 a 时,f(x)的减区间是(0,e,当 a 时,f (x)的减区间是 ,增区间是 ()当 时,由()知 f(x)的最小值是 f( )=1+lna ;易知 g(x)在(0,e上的最大值是 g(e)=4 lna;注意到(1+lna)( 4lna)=5+2lna0,故由题设知 ,解得 ae 2故 a 的取值范围是( ,e 2)