1、精选高中模拟试卷第 1 页,共 15 页静安区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 有 30 袋长富牛奶,编号为 1 至 30,若从中抽取 6 袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18 B4,8,12,16,20,24C2,7,12,17,22,27 D6,10,14,18,22,262 已知 ,则方程 的根的个数是( )2(0)()|log|xf()2fxA3 个 B4 个 C5 个 D6 个 3 将甲,乙等 5 位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人
2、的不同保送的方法数为( )(A)150 种 ( B ) 180 种 (C) 240 种 (D) 540 种4 已知函数 满足 ,且 , 分别是 上的偶函数和奇函数,()xFe()()gxh()gxhR若 使得不等式 恒成立,则实数的取值范围是( )0,2x20aA B C D(,(0,2(2,)5 已知函数 f(x)=lnx+2x 6,则它的零点所在的区间为( )A(0,1) B(1,2) C(2,3) D(3,4)6 执行如图的程序框图,则输出 S 的值为( )A2016 B2 C D17 已知条件 p:x 2+x20,条件 q:xa,若 q 是 p 的充分不必要条件,则 a 的取值范围可以
3、是( )Aa1 Ba 1 Ca 1 Da 3精选高中模拟试卷第 2 页,共 15 页8 与圆 C1:x 2+y26x+4y+12=0,C 2:x 2+y214x2y+14=0 都相切的直线有( )A1 条 B2 条 C3 条 D4 条9 设 是偶函数,且在 上是增函数,又 ,则使 的的取值范围是( )()f(0,)(5)0f()0fxA 或 B 或 C D 或505555x0x10已知 x,y 满足 ,且目标函数 z=2x+y 的最小值为 1,则实数 a 的值是( )A1 B C D11设函数 对一切实数 都满足 ,且方程 恰有 6 个不同的实根,则()fx(3)()fxf()0fx这 6 个
4、实根的和为( )A. B. C. D.81290【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.12已知在 R 上可导的函数 f(x)的图象如图所示,则不等式 f(x)f (x)0 的解集为( )A(2 ,0) B( , 2)(1,0) C( ,2)(0,+) D(2,1)(0,+)二、填空题13已知随机变量 N(2, 2),若 P(4)=0.4,则 P(0)= 14已知函数 f(x)= 恰有两个零点,则 a 的取值范围是 15对于映射 f:AB,若 A 中的不同元素有不同的象,且 B 中的每一个元素都有原象,则称 f:AB 为一一映射,若存在对应关系 ,使
5、A 到 B 成为一一映射,则称 A 到 B 具有相同的势,给出下列命题:A 是奇数集,B 是偶数集,则 A 和 B 具有相同的势;A 是平面直角坐标系内所有点形成的集合,B 是复数集,则 A 和 B 不具有相同的势;若区间 A=( 1,1),B=R,则 A 和 B 具有相同的势其中正确命题的序号是 精选高中模拟试卷第 3 页,共 15 页16设数列a n满足 a1=1,且 an+1an=n+1(nN *),则数列 的前 10 项的和为 17函数 f(x)=a x+4 的图象恒过定点 P,则 P 点坐标是 18已知函数 y=log (x 2ax+a)在区间(2,+)上是减函数,则实数 a 的取值
6、范围是 三、解答题19如图,O 的半径为 6,线段 AB 与相交于点 C、D,AC=4, BOD=A,OB 与 O 相交于点(1)求 BD 长;(2)当 CEOD 时,求证:AO=AD20已知函数 f(x)=()求函数 f(x)单调递增区间;()在ABC 中,角 A,B,C 的对边分别是 a,b,c,且满足(2a c)cosB=bcosC,求 f(A)的取值范围精选高中模拟试卷第 4 页,共 15 页21(本小题满分 12 分)两个人在进行一项掷骰子放球游戏中,规定:若掷出 1 点,甲盒中放一球;若掷出 2 点或 3 点,乙盒中放一球;若掷出 4 点或 5 点或 6 点,丙盒中放一球,前后共掷
7、 3 次,设 分别表示甲,乙,丙 3 个,xyz盒中的球数.(1)求 , , 的概率;0x1y2z(2)记 ,求随机变量 的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力22已知函数 f(x)=x alnx(aR )(1)当 a=2 时,求曲线 y=f(x)在点 A(1,f (1)处的切线方程;(2)求函数 f(x)的极值23设 0| |2,函数 f(x)=cos 2x| |sinx| |的最大值为 0,最小值为 4,且 与 的夹角为 45,求| + |精选高中模拟试卷第 5 页,共 15 页24如图,椭圆 C1: 的离心
8、率为 ,x 轴被曲线 C2:y=x 2b 截得的线段长等于椭圆C1的短轴长C 2与 y 轴的交点为 M,过点 M 的两条互相垂直的直线 l1,l 2分别交抛物线于 A、B 两点,交椭圆于 D、E 两点,()求 C1、C 2的方程;()记MAB ,MDE 的面积分别为 S1、S 2,若 ,求直线 AB 的方程精选高中模拟试卷第 6 页,共 15 页静安区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:从 30 件产品中随机抽取 6 件进行检验,采用系统抽样的间隔为 306=5,只有选项 C 中编号间隔为 5,故选:C2 【答案】C【
9、解析】由 ,设 f(A)=2,则 f(x)=A,则 ,则 A=4 或 A= ,作出 f(x)的图像,()2fx2logx14由数型结合,当 A= 时 3 个根,A=4 时有两个交点,所以 的根的个数是 5 个。14()f3 【答案】A【解析】 人可以分为 和 两种结果,所以每所大学至少保送一人的不同保送的方法数为5,2种,故选 A233150C4 【答案】B【解析】试题分析:因为函数 满足 ,且 分别是 上的偶函数和奇函数,xFegxh,gxhR使得不等式 , 0222xx eeeghxgh恒成立, 即 恒成立, 20a20xxeaA 2xxxea, 设 ,则函数 在 上单调递增, , 此时不
10、等2xxext xte20t式 ,当且仅当 ,即 时, 取等号, ,故选 B. t t22考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题不等式恒成立问题常见方法:分离参数 ()afx恒成立( min()afx即可)或 ()afx恒成立( max()f即可);数形结合;讨论最值 min0或 0f恒成立;讨论参数 .本题是利用方法求得的最大值的.精选高中模拟试卷第 7 页,共 15 页5 【答案】C【解析】解:易知函数 f(x) =lnx+2x6,在定义域 R+上单调递增因为当 x0 时, f(x) ;
11、f (1)=40;f(2)=ln220;f(3)=ln30;f(4)=ln4+20可见 f(2)f (3)0,故函数在( 2,3)上有且只有一个零点故选 C6 【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件 k2016,s=1,k=1满足条件 k2016,s= ,k=2满足条件 k2016,s=2k=3满足条件 k2016,s=1,k=4满足条件 k2016,s= ,k=5观察规律可知,s 的取值以 3 为周期,由 2015=3*671+2,有满足条件 k2016,s=2,k=2016不满足条件 k2016,退出循环,输出 s 的值为 2故选:B【点评】本题主要考查了程序框
12、图和算法,依次写出前几次循环得到的 s,k 的值,观察规律得到 s 的取值以3 为周期是解题的关键,属于基本知识的考查7 【答案】A【解析】解:条件 p:x 2+x20,条件 q:x2 或 x1q 是 p 的充分不必要条件a1 故选 A8 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数精选高中模拟试卷第 8 页,共 15 页【解答】解:圆 C1:x 2+y26x+4y+12=0,C 2:x 2+y214x2y+14=0 的方程可化为,; ;圆 C1,C 2 的圆心分别为(3,2),(7,1);半径为 r1=1,r 2=6两圆的圆心距 =r
13、2r 1;两个圆外切,它们只有 1 条内公切线,2 条外公切线故选 C9 【答案】B考点:函数的奇偶性与单调性【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于 轴对称,单调性在 轴两侧相反,即在 时单调递增,当 时,yy0x0x函数单调递减.结合 和对称性,可知 ,再结合函数的单调性,结合图象就可以求得最后的(5)0f(5)0f解集.110【答案】B【解析】解:由约束条件 作出可行域如图,由图可知 A(a,a),化目标函数 z=2x+y 为 y=2x+z,由图可知,当直线 y=2x+z 过 A(a,a)时直线在 y
14、轴上的截距最小,z 最小,z 的最小值为 2a+a=3a=1,解得:a= 精选高中模拟试卷第 9 页,共 15 页故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题11【答案】A.【解析】 , 的图象关于直线 对称,(3)()(6)fxffx()fx3x 个实根的和为 ,故选 A.661812【答案】B【解析】解:由 f(x)图象单调性可得 f(x)在( ,1)(0,+ )大于 0,在(1, 0)上小于 0,f( x) f(x)0 的解集为( ,2)(1,0)故选 B二、填空题13【答案】 0.6 【解析】解:随机变量 服从正态分布 N(2, 2),曲线关于 x=
15、2 对称,P( 0)=P (4)=1 P( 4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题14【答案】 (3,0) 【解析】解:由题意,a 0 时,x0,y=2x 3ax21,y =6x22ax0 恒成立,f(x)在(0,+)上至多一个零点;x0,函数 y=|x3|+a 无零点,a0,不符合题意;3 a0 时,函数 y=|x3|+a 在 0,+)上有两个零点,函数 y=2x3ax21 在(,0)上无零点,符合题意;a=3 时,函数 y=|x3|+a 在0 ,+)上有两个零点,函数 y=2x3ax21 在(,0)上有零点1,不符合
16、题意;精选高中模拟试卷第 10 页,共 15 页a3 时,函数 y=|x3|+a 在0,+)上有两个零点,函数 y=2x3ax21 在(,0)上有两个零点,不符合题意;综上所述,a 的取值范围是( 3,0)故答案为(3, 0)15【答案】 【解析】解:根据一一映射的定义,集合 A=奇数B= 偶数,不妨给出对应法则加 1则 AB 是一一映射,故正确;对设 Z 点的坐标(a,b),则 Z 点对应复数 a+bi,a 、 bR,复合一一映射的定义,故不正确;对,给出对应法则 y=tan x,对于 A,B 两集合可形成 f:A B 的一一映射,则 A、B 具有相同的势;正确故选:【点评】本题借助考查命题
17、的真假判断,考查一一映射的定义,属于基础题型,考查考生对新定义题的理解与应用能力16【答案】 【解析】解:数列a n满足 a1=1,且 an+1an=n+1(nN *),当 n2 时,a n=(a nan1)+(a 2a1)+a 1=n+2+1= 当 n=1 时,上式也成立,an= =2 数列 的前 n 项的和 Sn= 数列 的前 10 项的和为 精选高中模拟试卷第 11 页,共 15 页故答案为: 17【答案】 (0,5) 【解析】解:y=a x的图象恒过定点(0,1),而 f(x)=a x+4 的图象是把 y=ax的图象向上平移 4 个单位得到的,函数 f(x)=a x+4 的图象恒过定点
18、 P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题18【答案】 a 4 【解析】解:令 t=x2ax+a,则由函数 f(x)=g (t )=log t 在区间2,+)上为减函数,可得函数 t 在区间2,+)上为增函数且 t(2)0,故有 ,解得 a4,故实数 a 的取值范围是 a4,故答案为:a4【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题三、解答题19【答案】 【解析】解:(1)OC=OD,OCD=ODC , OAC=ODBBOD=A ,OBDAOC ,OC=OD=6,AC=4, ,BD=9(2)证
19、明:OC=OE,CE ODCOD= BOD= AAOD=180 AODC=180COD OCD=ADOAD=AO 【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法20【答案】 精选高中模拟试卷第 12 页,共 15 页【解析】解:()f(x) = sin cos +cos2 =sin( + ) ,由 2k + 2k ,k Z 可解得:4k x4k ,kZ,函数 f(x)单调递增区间是: 4k ,4k ,k Z()f(A)=sin ( + ) ,由条件及正弦定理得 sinBcosC=(2sinA sinC)cosB=2sinAcosBsinCcosB,则 sinBcosC+sin
20、CcosB=2sinAcosB,sin(B+C)=2sinAcosB ,又 sin(B+C)=sinA 0,cosB= ,又 0B ,B= 可得 0A , + , sin( + )1,故函数 f(A)的取值范围是(1, )【点评】本题考查三角函数性质及简单的三角变换,要求学生能正确运用三角函数的概念和公式对已知的三角函数进行化简求值,属于中档题21【答案】【解析】(1)由 , , 知,甲、乙、丙 3 个盒中的球数分别为 0,1,2,0x1y2z此时的概率 . (4 分)213PC精选高中模拟试卷第 13 页,共 15 页22【答案】 【解析】解:函数 f(x)的定义域为( 0,+ ), (1)
21、当 a=2 时,f(x)=x2lnx , ,因而 f(1)=1,f(1)= 1,所以曲线 y=f(x)在点 A(1,f(1)处的切线方程为 y1=(x 1),即 x+y2=0精选高中模拟试卷第 14 页,共 15 页(2)由 ,x0 知:当 a0 时, f(x)0,函数 f(x)为(0,+ )上的增函数,函数 f(x)无极值;当 a0 时,由 f(x)=0 ,解得 x=a又当 x(0,a)时,f (x)0,当 x(a,+)时,f(x)0从而函数 f(x)在 x=a 处取得极小值,且极小值为 f(a )=a alna,无极大值综上,当 a0 时,函数 f(x)无极值;当 a0 时,函数 f(x)
22、在 x=a 处取得极小值 aalna,无极大值23【答案】 【解析】解:f(x)=cos 2x| |sinx| |=sin2x| |sinx+1| |=(sinx+ ) 2+ +1| |,0| |2, 1 0,由二次函数可知当 sinx= 时,f(x)取最大值 +1| |=0,当 sinx=1 时,f (x)取最小值| | |=4,联立以上两式可得| |=| |=2,又 与 的夹角为 45,| + |= = =【点评】本题考查数量积与向量的夹角,涉及二次函数的最值和模长公式,属基础题24【答案】 【解析】解:()椭圆 C1: 的离心率为 ,a 2=2b2,令 x2b=0 可得 x= ,x 轴被
23、曲线 C2:y=x 2b 截得的线段长等于椭圆 C1的短轴长,2 =2b,b=1,精选高中模拟试卷第 15 页,共 15 页C 1、C 2的方程分别为 ,y=x 21; ()设直线 MA 的斜率为 k1,直线 MA 的方程为 y=k1x1 与 y=x21 联立得 x2k1x=0x=0 或 x=k1,A(k 1,k 121)同理可得 B(k 2,k 221)S 1= |MA|MB|= |k1|k2|y=k1x1 与椭圆方程联立,可得 D( ),同理可得 E( ) S 2= |MD|ME|= 若 则 解得 或直线 AB 的方程为 或 【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键