1、精选高中模拟试卷第 1 页,共 16 页胶州市实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 过点(0,2)的直线 l 与圆 x2+y2=1 有公共点,则直线 l 的倾斜角的取值范围是( )A B C D2 线段 AB 在平面 内,则直线 AB 与平面 的位置关系是( )AAB BABC由线段 AB 的长短而定 D以上都不对3 设ABC 的三边长分别为 a、b、c ,ABC 的面积为 S,内切圆半径为 r,则 ,类比这个结论可知:四面体 SABC 的四个面的面积分别为 S1、S 2、S 3、S 4,内切球半径为 r,四面体 SABC 的体积为
2、V,则r=( )A BC D4 在正方体 ABCDA1B1C1D1 中,点 E 为底面 ABCD 上的动点若三棱锥 BD1EC 的表面积最大,则 E 点位于( )A点 A 处 B线段 AD 的中点处C线段 AB 的中点处 D点 D 处5 已知等差数列a n中,a 6+a8=16,a 4=1,则 a10 的值是( )A15 B30 C31 D646 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如表所示:甲 乙 丙 丁平均环数 x 8.3 8.8 8.8 8.7方差 ss 3.5 3.6 2.2 5.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( )A甲 B乙
3、C丙 D丁7 若当 时,函数 ( 且 )始终满足 ,则函数 的图象大致Rx|)(xaf01a1)(xf 3|logxya是( )精选高中模拟试卷第 2 页,共 16 页【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等8 已知命题“p:x0,lnxx”,则p 为( )Ax0,lnxx Bx0,lnx x Cx0, lnxx Dx0,lnx x9 已知 f(x)=ax 3+bx+1(ab0),若 f(2016)=k,则 f(2016)=( )Ak Bk C1 k D2k10下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推
4、理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤11一个四边形的斜二侧直观图是一个底角为 45,腰和上底的长均为 1 的等腰梯形,那么原四边形的面积是( )A2+ B1+ C D12某几何体三视图如下图所示,则该几何体的体积是( )A1+ B1+ C1+ D1+ 精选高中模拟试卷第 3 页,共 16 页二、填空题13【2017-2018 第一学期东台安丰中学高三第一次月考】函数 的单调递增区间为2lnfx_14已知 sin+cos= ,且 ,则 sincos 的值为 15已知 2,a,不等式 2(4)20xaa恒成立,则的取值范围为_.16在直角梯形 分别为 的中点,,DC/AB,1
5、,B2,EFAB,ABC点 在以 为圆心, 为半径的圆弧 上变动(如图所示)若 ,其中 ,PEPD,R则 的取值范围是_17等比数列a n的前 n 项和 Snk 1k 22n(k 1,k 2 为常数),且 a2,a 3,a 42 成等差数列,则an_18已知函数 f(x)=(2x+1)e x,f(x)为 f(x)的导函数,则 f(0)的值为 三、解答题19如图,在平面直角坐标系 xOy 中,已知曲线 C 由圆弧 C1 和圆弧 C2 相接而成,两相接点 M,N 均在直线x=5 上,圆弧 C1 的圆心是坐标原点 O,半径为 13;圆弧 C2 过点 A(29,0)(1)求圆弧 C2 的方程;(2)曲
6、线 C 上是否存在点 P,满足 ?若存在,指出有几个这样的点;若不存在,请说明理由精选高中模拟试卷第 4 页,共 16 页20已知命题 p:“存在实数 a,使直线 x+ay2=0 与圆 x2+y2=1 有公共点”,命题 q:“ 存在实数 a,使点(a,1)在椭圆 内部”,若命题“p 且q”是真命题,求实数 a 的取值范围21如图,正方形 ABCD 中,以 D 为圆心、DA 为半径的圆弧与以 BC 为直径的半圆 O 交于点 F,连接 CF并延长交 AB 于点 E()求证:AE=EB;()若 EFFC= ,求正方形 ABCD 的面积精选高中模拟试卷第 5 页,共 16 页22已知数列a n的前 n
7、 项和 Sn=2n219n+1,记 Tn=|a1|+|a2|+|an|(1)求 Sn 的最小值及相应 n 的值;(2)求 Tn23某实验室一天的温度(单位: )随时间 (单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于 ,则在哪段时间实验室需要降温?24(本小题满分 12 分)求下列函数的定义域:(1) ;321xf(2) .2456f精选高中模拟试卷第 6 页,共 16 页精选高中模拟试卷第 7 页,共 16 页胶州市实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:若直线斜率不存在
8、,此时 x=0 与圆有交点,直线斜率存在,设为 k,则过 P 的直线方程为 y=kx2,即 kxy2=0,若过点(0,2 )的直线 l 与圆 x2+y2=1 有公共点,则圆心到直线的距离 d1,即 1,即 k230,解得 k 或 k ,即 且 ,综上所述, ,故选:A2 【答案】A【解析】解:线段 AB 在平面 内,直线 AB 上所有的点都在平面 内,直线 AB 与平面 的位置关系:直线在平面 内,用符号表示为: AB故选 A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上3 【答案】 C【解析】解
9、:设四面体的内切球的球心为 O,则球心 O 到四个面的距离都是 R,所以四面体的体积等于以 O 为顶点,分别以四个面为底面的 4 个三棱锥体积的和则四面体的体积为 精选高中模拟试卷第 8 页,共 16 页R=故选 C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)4 【答案】A【解析】解:如图,E 为底面 ABCD 上的动点,连接 BE,CE ,D 1E,对三棱锥 BD1EC,无论 E 在底面 ABCD 上的何位置,面 BCD1 的
10、面积为定值,要使三棱锥 BD1EC 的表面积最大,则侧面 BCE、CAD 1、BAD 1 的面积和最大,而当 E 与 A 重合时,三侧面的面积均最大,E 点位于点 A 处时,三棱锥 BD1EC 的表面积最大故选:A【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题5 【答案】A精选高中模拟试卷第 9 页,共 16 页【解析】解:等差数列a n,a6+a8=a4+a10,即 16=1+a10,a10=15,故选:A6 【答案】C【解析】解:甲、乙、丙、丁四人的平均环数乙和丙均为 8.8 环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,丙的射击水平最高且成绩最稳定,
11、从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙故选:C【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价7 【答案】【解析】由 始终满足 可知 由函数 是奇函数,排除 ;当|)(xaf1)(xfa3|logxyaB时, ,此时 ,排除 ;当 时, ,排除 ,因此1,0(x0|log0|log3yA0yD选 C8 【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:x0,lnxx”,则p 为x0,lnxx故选:B【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查9 【答案】D【解
12、析】解:f(x)=ax 3+bx+1(ab0),f (2016)=k ,f( 2016)=2016 3a+2016b+1=k,20163a+2016b=k1,f( 2016)= 20163a2016b+1=(k 1)+1=2k故选:D【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用精选高中模拟试卷第 10 页,共 16 页10【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选 C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于
13、基础题11【答案】A【解析】解:四边形的斜二侧直观图是一个底角为 45,腰和上底的长均为 1 的等腰梯形,原四边形为直角梯形,且 CD=CD=1, AB=OB= ,高 AD=20D=2,直角梯形 ABCD 的面积为 ,故选:A12【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是 圆锥,且圆锥的高为 4,底面半径为 1;正方体的边长为 1,几何体的体积 V=V 正方体 + =13+ 121=1+ 故选:A【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量精选高中模拟试卷第 11 页,共 16 页二、填空题13【答案】 20,【解析】
14、14【答案】 【解析】解:sin+cos= , ,sin 2+2sin cos+cos 2= ,2sincos= 1= ,且 sincos,sincos= = 故答案为: 15【答案】 (,0)(4,)【解析】试题分析:把原不等式看成是关于的一次不等式,在 2,-a时恒成立,只要满足在 2,-a时直线在轴上方即可,设关于的函数 4)(4)(xf()y 22 xx对任意的 ,当-2a时, 0f(a) x,即 086f ,解得 4x或 ;当 时, ,即 ,解得 或 ,的取值范围是 x|04或 ;故答案为: (,)(,)考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等
15、式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题把原不等式看成是关于的一次不等式,在 2-a时恒成立,只要满足在 2-a时直线在精选高中模拟试卷第 12 页,共 16 页轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.16【答案】 1,【解析】考点:向量运算【思路点晴】本题主要考查向量运算的坐标法. 平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度
16、问题、线段长问题及垂直问题转化为向量的数量积来解决17【答案】【解析】当 n1 时,a 1S 1k 12k 2,当 n2 时,a nS nS n1 (k 1k 22n)(k 1k 22n1 )k 22n1 ,k12k 2k 220,即 k1k 2 0,又 a2,a 3,a 42 成等差数列2a3a 2a 42,即 8k22k 28k 22.由联立得 k11,k 21,an2 n1 .答案:2 n118【答案】 3 【解析】解:f(x)=(2x+1)e x,f(x)=2e x+(2x+1 )e x,精选高中模拟试卷第 13 页,共 16 页f(0)=2e 0+(2 0+1)e 0=2+1=3故答
17、案为:3三、解答题19【答案】 【解析】解:(1)圆弧 C1 所在圆的方程为 x2+y2=169,令 x=5,解得 M(5,12),N(5, 12)2 分则直线 AM 的中垂线方程为 y6=2(x17),令 y=0,得圆弧 C2 所在圆的圆心为 (14,0),又圆弧 C2 所在圆的半径为 2914=15,所以圆弧 C2 的方程为(x 14) 2+y2=225(5 x29)5 分(2)假设存在这样的点 P(x,y),则由 PA= PO,得 x2+y2+2x29=0 8 分由 ,解得 x=70 (舍去) 9 分由 ,解得 x=0(舍去),综上知,这样的点 P 不存在10 分【点评】本题以圆为载体,
18、考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强20【答案】 【解析】解:直线 x+ay2=0 与圆 x2+y2=1 有公共点 1a21,即 a1 或 a1,命题 p 为真命题时,a 1 或 a1;点(a,1)在椭圆 内部, ,命题 q 为真命题时,2a 2,由复合命题真值表知:若命题“p 且q”是真命题,则命题 p,q 都是真命题精选高中模拟试卷第 14 页,共 16 页即 p 真 q 假,则 a2 或 a2故所求 a 的取值范围为(,22 ,+)21【答案】 【解析】证明:()以 D 为圆心、DA 为半径的圆弧与以 BC 为直径半圆交于点 F,且四边形 ABCD 为正方形,E
19、A 为圆 D 的切线,且 EB 是圆 O 的切线,由切割线定理得 EA2=EFEC,故 AE=EB()设正方形的边长为 a,连结 BF,BC 为圆 O 的直径,BFEC,在 Rt BCE 中,由射影定理得 EFFC=BF2= ,BF= = ,解得 a=2,正方形 ABCD 的面积为 4【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养22【答案】 【解析】解:(1)S n=2n219n+1=2 ,n=5 时,S n 取得最小值 =44(2)由 Sn=2n219n+1,n=1 时,a 1=219+1=16精选高中模拟试卷第 15 页,共 1
20、6 页n2 时, an=SnSn1=2n219n+12(n1) 219(n1)+1=4n21由 an0,解得 n5n6 时,a n0n5 时,T n=|a1|+|a2|+|an|=(a 1+a2+an)=S n=2n2+19n1n6 时, Tn=(a 1+a2+a5)+a 6+an=2S5+Sn=2n219n+89Tn= 【点评】本题考查了等差数列的通项公式及其前 n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题23【答案】【解析】(1)f(t)=10 =102sin( t+ ),t0 ,24), t+ ,故当 t+ = 时,函数取得最大值为 1
21、0+2=12,当 t+ = 时,函数取得最小值为 102=8,故实验室这一天的最大温差为 128=4。(2)由题意可得,当 f(t)11 时,需要降温,由()可得 f(t)=102sin( t+ ),由 102sin( t+ )11,求得 sin( t+ ) ,即 t+ ,解得 10t 18,即在 10 时到 18 时,需要降温。24【答案】(1) ;(2) ,1,1,3,4【解析】考精选高中模拟试卷第 16 页,共 16 页点:函数的定义域. 1【方法点晴】本题主要考查了函数的定义域的求解,其中解答中涉及到分式不等式的求解、一元二次不等式的求解、集合的交集运算等综合考查,着重考查了学生的推理与运算能力,属于中档试题,本题的解答中正确把握函数的定义域,列出相应的不等式或不等式组是解答的关键,同时理解函数的定义域的概念,也是解答的一个重要一环.