
圆锥曲线起始课教学设计(上海西南位育中学徐迪斐).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 文币 0人已下载
下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线起始课教学设计(上海西南位育中学徐迪斐).doc
- 资源描述:
-
1、课件园 http:/圆锥曲线起始课 教学设计西南位育中学 徐迪斐一、教学内容解析 指定课题说明 课题:圆锥曲线起始课 课型:概念课 说明:体现数学史融入数学教学的思想,借助信息技术、实物模型等,通过丰富的实例,使学生了解圆锥曲线的背景和应用。经历从具体情境中抽象椭圆本质特征的过程,建立椭圆的概念、标准方程。 上海市中小学数学课程标准以生活中的实例引出椭圆的概念,再抽象为动点的轨迹。根据椭圆的定义建立椭圆的标准方程,重点讨论焦点在 轴上的标准方程。x 全国高中数学课程标准了解圆锥曲线的实际背景;了解圆锥曲线在刻画现实世界和实际问题中的作用和应用;经历从具体情境中抽象出椭圆模型的过程;体会数形结合
2、的思想;掌握椭圆的定义、标准方程。根据指定课题要求,并参考上海市中小学数学课程标准 、 全国高中数学课程标准以及上海市二期课改教材,本节课的教学内容主要设定为:了解圆锥曲线的历史、背景和应用,从生活实例或具体情境出发形成椭圆(以及焦点、焦距)的概念并建立椭圆的标准方程。在上海市二期课改教材中,椭圆的第一课时课题并非“圆锥曲线起始课”而是“椭圆的标准方程” ,从椭圆规画椭圆的过程中归纳椭圆的定义,并重点研究椭圆的标准方程。由于指定课题说明中对于椭圆概念的形成过程和数学史的融入有更具体的要求,相比上海教材更符合圆锥曲线的历史发展顺序和学生的认知顺序,更有利于学生掌握椭圆的概念,因此考虑将上海教材第
3、一课时“椭圆的标准方程”的教学内容稍作调整,将焦点在 轴上的标准方程y以及椭圆标准方程的简单应用移至后续课时完成。二、学生学情分析本节课为借班上课,授课班级是浦东洋泾中学高二(12)班学生。据了解,该校为市示课件园 http:/范性高中,而本次授课班级是高二四个物理班之一。但由于借班上课,与学生只有不到半个小时的交流,对班级学生的具体情况仍比较模糊,需要为学生水平的低限做好准备,在难点处多预设一些铺垫,以作备用。此外,受承办学校教学进度制约,授课班级未学习直线的方程、圆的方程,只学习了曲线方程的概念和求法(仅 1 课时) 。依此判断,学生虽然具备推导椭圆标准方程的基础,但接触解析几何时日不多,
4、求曲线方程的经验也并不丰富。因此在教学时,一方面可有意在数学史部分渗透解析几何的核心思想,让学生在了解本章节的研究内容的同时了解其研究方法;另一方面,在建立椭圆标准方程之前应适当回顾求曲线方程的一般步骤,并给学生搭建一些平台,便于学生推导,以免因推导过程的漫长乏味影响学生的学习兴趣。本节课的教学过程中还可能涉及一些空间图形(椭圆的起源所决定) ,而立体几何是上海市二期课改教材高三内容,高二学生尚未学习。因此,如果设计空间图形为背景的教学过程,需要作较细致的铺垫或形象的教具辅助学生理解,且学生思考的过程应以观察、发现为主,而不是严格的证明。三、教学目标设置根据教学内容解析、学生学情分析制定本节课
5、的教学目标、重难点如下:教学目标1.通过历史的回溯和实例的展示,了解圆锥曲线的背景(产生、发展) 、应用及其研究方法,感受其中蕴含的数学文化;2.经历从具体情境中抽象椭圆的本质特征以及椭圆定义的过程,掌握椭圆的概念;3.根据椭圆的定义建立焦点在 轴上的椭圆标准方程,进一步巩固求曲线方程的一般方法和x步骤,体验用代数方法研究几何问题的思想方法。教学重点:掌握椭圆的概念。教学难点:从具体情境中抽象椭圆的本质特征。四、教学策略分析1.数学史的呈现圆锥曲线的历史发展过程中蕴含着丰富的数学文化。除了概念、性质、标准方程这些显性数学文化之外,在圆锥曲线形成的历史背景和实际应用中还包含着数学思想(化归思想、
6、数形结合思想) 、数学方法(用代数方法研究几何问题、构造法) 、信念品质(探索真理、理性分析) 、价值判断和审美追求(圆锥曲线的实际应用)等丰富的隐性数学文化。显性的数课件园 http:/学文化(椭圆的概念)是本节课的重点,必须落实。但同时,课堂也需要隐性数学文化的浸润,才能充满生机。根据学生的知识基础,教师在教学设计时,应在圆锥曲线的 2000 多年的发展史中选取学生能够理解的且有一定教学价值的部分按历史顺序“去支强干”进行重组,对学生理解有负面作用的作以合理改编(例如椭圆的起源有许多其他猜想,仅选取“削尖的木桩”作为椭圆的起源介绍给学生) ,对难度过高的内容作以调整或铺垫(例如选取圆柱背景
7、的“旦德林球”发现椭圆的性质,而非通过圆锥背景的“旦德林球”或古希腊纯几何证明发现) ,将这些丰富的数学文化以符合学生认知基础和认知规律的教学形态呈现给学生。具体图表如下:圆锥曲线发展史 教学价值圆锥曲线的起源了解圆锥曲线的来历和最初的图形角度定义,感受几何图形源于生活服务于生活;圆锥曲线的成果了解圆锥曲线的历史成果,欣赏与感受古希腊数学家的理性与智慧,引出解析几何的发展史;解析几何学的创立了解解析几何的核心思想以及它在数学史上的地位和作用,了解从数量关系角度定义椭圆的时代背景和学科发展背景,渗透数形结合数学思想,引出椭圆的性质;椭圆性质的发现经历从具体情境中抽象椭圆本质特征的过程,了解椭圆最
8、初定义与椭圆本质特征的联系;渗透化归数学思想,体验巧妙的数学方法构造法;椭圆的再次定义经历从数量关系角度再次定义椭圆的过程,培养探索真理和理性分析的信念品质,掌握椭圆的概念,引出椭圆的标准方程;椭圆的应用 了解圆锥曲线的实际应用;激发学生的学习兴趣;2.椭圆概念的形成几何图形都源于生活,是从具体事物中抽象出来的,椭圆也不例外。历史上,椭圆最早的定义是图形角度的定义(通过平面与圆柱或圆锥的交线定义椭圆) ,而教材中的定义则是解析几何诞生之后,人们为了方便用代数方程研究圆锥曲线,根据椭圆的性质,从数量关系角度对椭圆进行的再次定义。虽然两者等价,但从形式上看却相差甚远。因此在建立椭圆概念时,如果脱离
9、图形角度课件园 http:/的椭圆定义,直接抛出数量关系形式的椭圆定义,或以其他方式抽象出该定义(例如利用椭圆规抽象出定义、利用圆心“分离”抽象出定义) ,这样的概念形成过程虽然易于教学,但不符合椭圆概念的形成与发展的自然顺序。学生会产生“为什么这样定义椭圆?” 、 “这样定义的椭圆和我们生活中熟悉的椭圆一样吗?” 、 “为什么椭圆又叫圆锥曲线?”这样的疑问。如果教师在之后补充说明两者之间的联系,虽然看似弥补了不足,但那样倒还不如在之前以椭圆概念的历史发展顺序呈现给学生。既然概念的形成过程的最佳方式是以历史发展顺序呈现,那么,可以借助解析几何发展史,自然引出椭圆方程的建立,并设置悬疑,引发对椭
10、圆上任意一点所满足的数量关系的探索。之后,学生需要分别经历两个探索过程:(1)发现椭圆的本质特征(从纯几何角度研究椭圆的性质:椭圆上的任意一点到两个定点的距离之和为常数) ;(2)从数量关系角度再次定义椭圆。在第一个探索过程中,教师需要创设一个适合学生抽象椭圆本质特征的情境作为教学载体。历史上第一个得出椭圆该性质的是古希腊阿波罗尼奥斯的几何证明,但证明过程十分复杂,显然不适合作为教学载体。历史上最简洁的证明是比利时数学家旦德林的“旦德林双球构造法” ,但考虑到学生未学习立体几何,且圆柱背景与圆锥背景在图形和推理方法上都有相似之处,决定将“旦德林球法”的圆锥背景简化为圆柱背景作为载体,并且辅以教
11、具展示和细致的铺垫便于学生发现椭圆的这一性质。在此基础上,将圆锥背景留给学生课后思考。在第二个探索过程中,学生须从椭圆的性质出发,通过完善其逆命题,得到数量关系角度下椭圆的定义。在这一过程中,教师通过创设学生动手画椭圆的活动情境,让学生直观地体验、思考“到两个定点的距离之和为常数的点的轨迹是否椭圆?” 。教师在简单提示了椭圆规的使用方法后,由学生体验画椭圆的过程并思考教师的提问,从中归纳出“在平面内”以及“常数大于焦距”的补充条件。这一活动不仅巩固了椭圆的本质特征,还为学生将性质的逆命题(增加条件)完善、修改为定义提供更直观的体验,培养学生探索真理和理性分析的信念品质,同时还能培养学生的团结协
12、作和动手操作能力,并激发学生的学习兴趣。3.椭圆标准方程的建立由于课题的变化(上海市二期课改教材:椭圆的标准方程,本节课:圆锥曲线起始课) ,椭圆的标准方程已经不是本节课的重点,而仅定位为“章节后续研究的开端” 。在这样的指导思想下,建立椭圆标准方程的意义在于:(1)为后续的性质研究做一些必要的基础工作;(2)学生进一步巩固求曲线方程的方法,践行解析几何“用代数方法研课件园 http:/究几何问题”的思想方法。基于以上考虑,建立椭圆标准方程的过程无需组织学生过度探究,建系、设点的过程可由教师直接约定,最终换元的过程也由教师直接给出,以免冲淡本节课重点。但是,学生亲身体验椭圆标准方程的演算过程不
13、可缺少,它对于培养学生实践探索的科学精神依然十分重要。此外,经过查阅资料和反复推敲,决定依然选用上海市二期课改教材的“二次平方法” ,主要原因还是学生的知识基础。历史上,椭圆标准方程的建立方法还有消参法、变换法等方法。但由于学生刚学习了曲线方程的概念及求曲线方程的方法,所以消参法对学生而言显然过难;另外,学生还未学习过圆的标准方程以及坐标变换,从圆的标准方程入手采用坐标变换的方式也没有知识基础。以上是本节课核心的教学策略。教学过程中具体的设计意图参见教学过程板块。五、教学过程(一)新课引入1.播放视频播放经剪辑的嫦娥一号探月的概述,展现嫦娥一号优美的椭圆轨道,引入课题。嫦娥一号成功发射拉开了我
14、国探月工程的序幕,将中国人几千年来的神话传说终于变成了现实。告诉大家一个好消息,就在前天,探月三期工程的探路“小飞” (返回飞行试验器)经历了 8 天飞行之后成功返回,标志着我国航天技术又取得了新的突破。请看,嫦娥一号在星空中划过了一道美丽的曲线,大家知不知道这条曲线叫什么名字?2.提出问题卫星运行的轨迹是椭圆。在生活中还有哪些事物是椭圆?大家认为椭圆是立体图形还是平面图形?既然是平面图形,那以上这些是不是椭圆?操场的一条跑道线是平面图形,它是不是椭圆呢?那么,究竟什么是数学意义上的椭圆?椭圆有什么性质?椭圆又有哪些应用呢?让我们带着这些问题开始今天的新课圆锥曲线起始课(椭圆的概念) 。课件园
15、 http:/【设计意图】通过振奋人心的音乐和视频剪辑了解圆锥曲线的航天应用并同时引入新课。通过否定学生心中常见的对椭圆的错误理解,引起认知冲突,激发学生的学习兴趣和求知欲,并引出本节课的学习内容。(二)椭圆的起源和发展每一个几何图形都源于生活,是从具体事物中抽象出来的,椭圆也不例外。那最早人们是从怎样的具体事物中发现椭圆这一曲线的呢?让我们回到公元前四世纪的古希腊。相传最早是古希腊人通过削尖的圆木桩发现了一条像圆又不是圆的曲线,把它命名为椭圆。从立体几何的角度,也就是“平面斜截圆柱所得的交线” 。 后来又有人发现,平面斜截圆锥所得的交线也可能是椭圆。不仅如此,调整平面的倾斜程度还能得到其他曲
16、线,因此人们把这些曲线命名为圆锥曲线。这也是为什么椭圆是圆锥曲线中的一类曲线。人们又发现,研究这些曲线的性质,还有助于解决三大数学问题之一的“倍立方问题” 。于是,许多古希腊的数学家都开始研究这一类曲线,其中还有大家所熟知的欧几里得,可惜其中的许多著作都失传了。迄今为止,修复得最完整的是阿波罗尼奥斯的著作圆锥曲线 ,在该书中他在总结了前人成果的基础上又增加了自己的创见,从“平面斜截圆锥”出发,运用纯几何方法,证明了近 500 个命题,这在当时可以说堪称奇迹,即便是之后的近 2000 年内也无人能超越。因此,阿波罗尼奥斯的圆锥曲线也被长期视为数学经典大作与欧几里得的原本并驾齐驱。直到 17 世纪
展开阅读全文
