1、无约束最优化,数学建模与数学实验,实验目的,实验内容,2、掌握用数学软件包求解无约束最优化问题。,1、了解无约束最优化基本算法。,1、无约束优化基本思想及基本算法。,4、实验作业。,3、用MATLAB求解无约束优化问题。,2、MATLAB优化工具箱简介,无约束最优化问题,求解无约束最优化问题的的基本思想,*无约束最优化问题的基本算法,返回,标准形式:,求解无约束最优化问题的基本思想,求解的基本思想 ( 以二元函数为例 ),5,3,1,连续可微,多局部极小,唯一极小 (全局极小),搜索过程,最优点 (1 1) 初始点 (-1 1),-1,1,4.00,-0.79,0.58,3.39,-0.53,
2、0.23,2.60,-0.18,0.00,1.50,0.09,-0.03,0.98,0.37,0.11,0.47,0.59,0.33,0.20,0.80,0.63,0.05,0.95,0.90,0.003,0.99,0.99,1E-4,0.999,0.998,1E-5,0.9997,0.9998,1E-8,返回,无约束优化问题的基本算法,最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法.,1最速下降法(共轭梯度法)算法步骤:
3、,无约束优化问题的基本算法,1最速下降法(共轭梯度法)算法步骤:,2牛顿法算法步骤:,如果f是对称正定矩阵A的二次函数,则用牛顿法经过一次迭代 就可达到最优点,如不是二次函数,则牛顿法不能一步达到极值点, 但由于这种函数在极值点附近和二次函数很近似,因此牛顿法的收 敛速度还是很快的.,牛顿法的收敛速度虽然较快,但要求Hessian矩阵要可逆,要计算二阶导数和逆矩阵,就加大了计算机计算量和存储量.,3拟牛顿法,返回,Matlab优化工具箱简介,1.MATLAB求解优化问题的主要函数,2. 优化函数的输入变量,使用优化函数或优化工具箱中其它优化函数时, 输入变量见下表:,3. 优化函数的输出变量下
4、表:,4控制参数options的设置,(3) MaxIter: 允许进行迭代的最大次数,取值为正整数.,Options中常用的几个参数的名称、含义、取值如下:,(1) Display: 显示水平.取值为off时,不显示输出; 取值为iter时,显示每次迭代的信息;取值为final时,显示最终结果.默认值为final.,(2) MaxFunEvals: 允许进行函数评价的最大次数,取值为正整数.,例:opts=optimset(Display,iter,TolFun,1e-8)该语句创建一个称为opts的优化选项结构,其中显示参数设为iter, TolFun参数设为1e-8.,控制参数optio
5、ns可以通过函数optimset创建或修改。命令的格式如下:,(1) options=optimset(optimfun)创建一个含有所有参数名,并与优化函数optimfun相关的默认值的选项结构options.,(2)options=optimset(param1,value1,param2,value2,.)创建一个名称为options的优化选项参数,其中指定的参数具有指定值,所有未指定的参数取默认值.,(3)options=optimset(oldops,param1,value1,param2,value2,.)创建名称为oldops的参数的拷贝,用指定的参数值修改oldops中相应的
6、参数.,返回,用Matlab解无约束优化问题,其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。,常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)x,fval= fminbnd(.) (4)x,fval,exitflag= fminbnd(.) (5)x,fval,exitflag,output= fminbnd(.),To Matlab(wliti1),主程序为wliti1.
7、m:f=2*exp(-x).*sin(x);fplot(f,0,8); %作图语句xmin,ymin=fminbnd (f, 0,8)f1=-2*exp(-x).*sin(x);xmax,ymax=fminbnd (f1, 0,8),例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?,解,先编写M文件fun0.m如下:function f=fun0(x)f=-(3-2*x).2*x;,主程序为wliti2.m:x,fval=fminbnd(fun0,0,1.5);xmax=xfmax=-fval,运算结果为: xmax = 0.5000,f
8、max =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.,To Matlab(wliti2),命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options);或x=fminsearch(fun,X0 ,options) (3)x,fval= fminunc(.);或x,fval= fminsearch(.) (4)x,fval,exitflag= fminunc(.);或x,fval,exitflag= fminsearch (5)x,fval,exitf
9、lag,output= fminunc(.);或x,fval,exitflag,output= fminsearch(.),2、多元函数无约束优化问题,标准型为:min F(X),3 fminunc为中型优化算法的步长一维搜索提供了两种算法,由options中参数LineSearchType控制: LineSearchType=quadcubic(缺省值),混合的二次和三次多项式插值; LineSearchType=cubicpoly,三次多项式插,使用fminunc和 fminsearch可能会得到局部最优解.,说明:,fminsearch是用单纯形法寻优. fminunc的算法见以下几点说
10、明:,1 fminunc为无约束优化提供了大型优化和中型优化算法。由options中的参数LargeScale控制: LargeScale=on(默认值),使用大型算法 LargeScale=off(默认值),使用中型算法,2 fminunc为中型优化算法的搜索方向提供了4种算法,由 options中的参数HessUpdate控制: HessUpdate=bfgs(默认值),拟牛顿法的BFGS公式; HessUpdate=dfp,拟牛顿法的DFP公式; HessUpdate=steepdesc,最速下降法,例3 min f(x)=(4x12+2x22+4x1x2+2x2+1)*exp(x1),
11、To Matlab(wliti3),1、编写M-文件 fun1.m:function f = fun1 (x)f = exp(x(1)*(4*x(1)2+2*x(2)2+4*x(1)*x(2)+2*x(2)+1);2、输入M文件wliti3.m如下:x0 = -1, 1;x=fminunc(fun1,x0);y=fun1(x),3、运行结果:x= 0.5000 -1.0000y = 1.3029e-10,To Matlab (wliti31),To Matlab (wliti32),3.用fminsearch函数求解,To Matlab(wliti41),输入命令:f=100*(x(2)-x(
12、1)2)2+(1-x(1)2;x,fval,exitflag,output=fminsearch(f, -1.2 2),运行结果:x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1 output = iterations: 108funcCount: 202algorithm: Nelder-Mead simplex direct search,4. 用fminunc 函数,To Matlab(wliti44),(1)建立M-文件fun2.m function f=fun2(x)f=100*(x(2)-x(1)2)2+(1-x(1)2,(2)主程序w
13、liti44.m,Rosenbrock函数不同算法的计算结果,可以看出,最速下降法的结果最差.因为最速下降法特别不适合于从一狭长通道到达最优解的情况.,例5 产销量的最佳安排某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.,基本假设,1价格与销量成线性关系,2成本与产量成负指数关系,模型建立,若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280, a21=0.2,a22=2,r1=30,1=0.015,c1=20, r2=100,2=0.02,c2=30,则 问题转化为无约束优
14、化问题:求甲,乙两个牌号的产量x1,x2,使 总利润z最大.,为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2 的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70, 我们把它作为原问题的初始值.,总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2,模型求解,1.建立M-文件fun.m: function f = fun(x)y1=(100-x(1)- 0.1*x(2)-(30*exp(-0.015*x(1)+20)*x(1);y2=(280-0.2*x(1)- 2*x(2)-(100*exp(-0.02*x(2)+30)*x(2);f=-y1-y2;,2.输入命令:x0=50,70;x=fminunc(fun,x0),z=fun(x),3.计算结果:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.,To Matlab(wliti5),返回,实验作业,