收藏 分享(赏)

桓台县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9506346 上传时间:2019-08-11 格式:DOC 页数:15 大小:552.50KB
下载 相关 举报
桓台县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共15页
桓台县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共15页
桓台县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共15页
桓台县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共15页
桓台县外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页桓台县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若全集 U=1,0,1,2,P=xZ|x 22,则 UP=( )A2 B0,2 C1,2 D 1,0,22 执行如图所以的程序框图,如果输入 a=5,那么输出 n=( )A2 B3 C4 D53 设有直线 m、n 和平面 、,下列四个命题中,正确的是( )A若 m,n ,则 mn B若 m,n ,m ,n,则 C若 ,m,则 mD若 ,m ,m ,则 m4 已知圆 方程为 ,过点 与圆 相切的直线方程为( )2xy(1,)PA B C D0xy010

2、xy20xy5 若 f(x)=sin(2x+ ),则“f(x)的图象关于 x= 对称”是“= ”的( )A充分不必要条件 B必要不充分条件C充要条件 D既不充分又不必要条件6 已知一元二次不等式 f( x)0 的解集为x|x 1 或 x ,则 f(10 x)0 的解集为( )Ax|x1 或 xlg2 Bx| 1xlg2Cx|xlg2 Dx|x lg27 已知ABC 中,a=1,b= ,B=45,则角 A 等于( )A150 B90 C60 D30精选高中模拟试卷第 2 页,共 15 页8 已知函数 f(x)满足 f(x)=f( x),且当 x( , )时,f (x)=e x+sinx,则( )

3、A B CD9 某班设计了一个八边形的班徽(如图),它由腰长为 1,顶角为 的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A 2sincos2 B sin3cosC. 31 D 2110设 a,b,c ,R +,则“abc=1”是“ ”的( )A充分条件但不是必要条件 B必要条件但不是充分条件C充分必要条件 D既不充分也不必要的条件11已知正方体的不在同一表面的两个顶点 A(1,2,1),B (3,2,3),则正方体的棱长等于( )A4 B2 C D212在正方体 8 个顶点中任选 3 个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A B C D二、填空题

4、13【南通中学 2018 届高三 10 月月考】定义在 上的函数 满足 , 为 的导函数,且对 恒成立,则 的取值范围是_.14已知正方体 ABCDA1B1C1D1的一个面 A1B1C1D1在半径为 的半球底面上,A 、B 、C、D 四个顶点都在此半球面上,则正方体 ABCDA1B1C1D1的体积为 15若点 p(1,1)为圆(x3) 2+y2=9 的弦 MN 的中点,则弦 MN 所在直线方程为 16执行如图所示的程序框图,输出的所有值之和是 .精选高中模拟试卷第 3 页,共 15 页【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.17将曲线 向右平移 个单位后得到

5、曲线 ,若 与 关于 轴对称,则1:C2sin(),04yx62C12x的最小值为_.18刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下:甲说:“我们四人都没考好”乙说:“我们四人中有人考的好”丙说:“乙和丁至少有一人没考好”丁说:“我没考好”结果,四名学生中有两人说对 了,则这四名学生中的 两人说对了 三、解答题19已知数列a n是等比数列, Sn为数列a n的前 n 项和,且 a3=3,S 3=9()求数列a n的通项公式;()设 bn=log2 ,且b n为递增数列,若 cn= ,求证:c 1+c2+c3+cn1精选高中模拟试

6、卷第 4 页,共 15 页20(本小题满分 12 分)已知平面向量 , , .(1,)ax(23,)bx()R(1)若 ,求 ;/|(2)若与夹角为锐角,求的取值范围.21已知曲线 C 的参数方程为 (y 为参数),过点 A(2,1)作平行于 = 的直线 l 与曲线 C 分别交于 B,C 两点(极坐标系的极点、极轴分别与直角坐标系的原点、x 轴的正半轴重合)()写出曲线 C 的普通方程;()求 B、C 两点间的距离22已知 x2y2+2xyi=2i,求实数 x、y 的值精选高中模拟试卷第 5 页,共 15 页23已知奇函数 f(x)= (c R)()求 c 的值;()当 x2,+)时,求 f(

7、x)的最小值24设 f(x)=ax 2(a+1)x+1(1)解关于 x 的不等式 f(x )0;(2)若对任意的 a 1,1 ,不等式 f(x)0 恒成立,求 x 的取值范围精选高中模拟试卷第 6 页,共 15 页桓台县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:x 22 xP=xZ|x 22=x| x ,xZ|=1,0,1,又 全集 U=1,0,1,2,UP=2故选:A2 【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表:p 15 20 结束q 5 25n 2 3结束运行的时候 n=3故选:B【点评】本题考查了

8、程序框图的应用,考查了条件结构和循环结构的知识点解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果属于基础题3 【答案】D【解析】解:A 不对,由面面平行的判定定理知, m 与 n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选:D4 【答案】A【解析】试题分析:圆心 ,设切线斜率为,则切线方程为 ,由(0,)2Cr1(),10ykxyk,所以切线方程为 ,故选 A.21, 1kdrk20x考点:直线与圆的位置关系5 【答案】B精选高中模拟试卷第 7 页,共 15 页【解析】解:若 f(x)的图

9、象关于 x= 对称,则 2 += +k,解得 = +k,kZ,此时 = 不一定成立,反之成立,即“f(x)的图象关于 x= 对称”是“= ”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键6 【答案】D【解析】解:由题意可知 f( x)0 的解集为x| 1x ,故可得 f(10 x)0 等价于110 x ,由指数函数的值域为(0,+)一定有 10x1,而 10x 可化为 10x ,即 10x10 lg2,由指数函数的单调性可知:xlg2故选:D7 【答案】D【解析】解: ,B=45根据正弦定理可知 sinA= =A=30故选 D【点评

10、】本题主要考查正弦定理的应用属基础题8 【答案】D【解析】解:由 f(x)=f(x)知,精选高中模拟试卷第 8 页,共 15 页f( )=f( )=f( ),当 x( , )时,f(x)=e x+sinx 为增函数 ,f( )f( )f( ),f( )f( )f( ),故选:D9 【答案】A【解析】试题分析:利用余弦定理求出正方形面积 cos2cos2-11 S;利用三角形知识得出四个等腰三角形面积 sin2i124S;故八边形面积 2cosin1 S.故本题正确答案为 A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首

11、先根据三角形面积公式 sin21i12S求出个三角形的面积 sin24S;接下来利用余弦定理可求出正方形的边长的平方 co-2,进而得到正方形的面积 cos2co-11 ,最后得到答案.10【答案】A【解析】解:因为 abc=1,所以 ,则 = a+b+c当 a=3,b=2,c=1 时, 显然成立,但是 abc=61,所以设 a,b,c ,R +,则“abc=1”是“ ”的充分条件但不是必要条件故选 A11【答案】A【解析】解:正方体中不在同一表面上两顶点 A(1,2,1),B (3,2,3),精选高中模拟试卷第 9 页,共 15 页AB 是正方体的体对角线,AB= ,设正方体的棱长为 x,则

12、 ,解得 x=4正方体的棱长为 4,故选:A【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题12【答案】C【解析】解:正方体 8 个顶点中任选 3 个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有 46=24 个,而在 8 个点中选 3 个点的有 C83=56,所以所求概率为 =故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题二、填空题13【答案】精选高中模拟试卷第 10 页,共 15 页

13、【解析】 点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。14【答案】 2 【解析】解:如图所示,连接 A1C1,B 1D1,相交于点 O则点 O 为球心,OA= 设正方体的边长为 x,则 A

14、1O= x在 RtOAA1中,由勾股定理可得: +x2= ,解得 x= 正方体 ABCDA1B1C1D1的体积 V= =2 故答案为:2 精选高中模拟试卷第 11 页,共 15 页15【答案】:2xy 1=0解: P(1,1)为圆(x3) 2+y2=9 的弦 MN 的中点,圆心与点 P 确定的直线斜率为 = ,弦 MN 所在直线的斜率为 2,则弦 MN 所在直线的方程为 y1=2(x1),即 2xy1=0故答案为:2xy 1=016【答案】54【解析】根据程序框图可知循环体共运行了 9 次,输出的 是 1,3,5,7,9,11,13,15, 17 中不是 3 的x倍数的数,所以所有输出值的和

15、.41375117【答案】 6【解析】解析:曲线 的解析式为 ,由 与 关于 轴对2C2sin()2sin()646yxx1C2x称知 ,即 对一sin()si()464xx1cos)si(cos()04 切 恒成立, , ,由 得 的最小值R1co0sin()6(2)6k6(21),kZ为 6.18【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。三、解答题19【答案】已知数列a n是等比数列, Sn为数列a n的前 n 项和,且 a3=3,S 3=9()求数列a n的通项公式

16、;精选高中模拟试卷第 12 页,共 15 页()设 bn=log2 ,且b n为递增数列,若 cn= ,求证:c 1+c2+c3+cn1【考点】数列的求和;等比数列的通项公式【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列【分析】()设数列a n的公比为 q,从而可得 3(1+ + )=9,从而解得;()讨论可知 a2n+3=3( ) 2n=3( ) 2n,从而可得 bn=log2 =2n,利用裂项求和法求和【解析】解:()设数列a n的公比为 q,则 3(1+ + )=9,解得,q=1 或 q= ;故 an=3,或 an=3( ) n3;()证明:若 an=3,则 bn=0,与题

17、意不符;故 a2n+3=3( ) 2n=3( ) 2n,故 bn=log2 =2n,故 cn= = ,故 c1+c2+c3+cn=1 + + =1 1【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用20【答案】(1)2 或 ;(2) 5(1,0),3【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量 的夹角为锐角的充要条件是 且 不共线,由此可得范围,abab,试题解析:(1)由 ,得 或 ,/0x2当 时, , ,0x(2,)|当 时, , .45精选高中模拟试卷第 13 页,共 15 页

18、(2)与夹角为锐角, , , ,0ab230x13x又因为 时, ,0x/所以的取值范围是 .(1,),3考点:向量平行的坐标运算,向量的模与数量积【名师点睛】由向量的数量积 可得向量的夹角公式,当为锐角时, ,但当cosab cos0时,可能为锐角,也可能为 0(此时两向量同向),因此两向量夹角为锐角的充要条件是cos0且 不同向,同样两向量夹角为钝角的充要条件是 且 不反向ab, 0ab,21【答案】 【解析】解:()由曲线 C 的参数方程为 (y 为参数),消去参数 t 得,y 2=4x()依题意,直线 l 的参数方程为 (t 为参数),代入抛物线方程得 可得 , ,t 1t2=14|B

19、C|=|t 1t2|= = =8【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题22【答案】 【解析】解:由复数相等的条件,得 (4 分)解得 或 (8 分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题23【答案】 【解析】解:()f(x)是奇函数, f ( x)= f(x), = = ,精选高中模拟试卷第 14 页,共 15 页比较系数得:c=c ,c=0,f(x)= =x+ ;()f(x)=x+ ,f (x)=1 ,当 x2,+ )时,1 0,函数 f(x)在2,+)上单调递增,f(x) min=f(2)= 【点评】本题考查了函数的奇偶性

20、问题,考查了函数的单调性、最值问题,是一道中档题24【答案】 【解析】解:(1)f(x) 0,即为 ax2(a+1)x+10,即有(ax1)(x1)0,当 a=0 时,即有 1x0,解得 x1;当 a0 时,即有(x1)(x )0,由 1 可得 x1;当 a=1 时,(x1) 20,即有 xR ,x 1;当 a1 时,1 ,可得 x1 或 x ;当 0a1 时,1 ,可得 x1 或 x 综上可得,a=0 时,解集为x|x1 ;a0 时,解集为x| x1;a=1 时,解集为x|xR,x1;a1 时,解集为x|x1 或 x ;0a1 时,解集为x|x1 或 x (2)对任意的 a 1,1 ,不等式 f(x)0 恒成立,即为 ax2(a+1)x+1 0,即 a(x 21) x+10,对任意的 a1,1 恒成立精选高中模拟试卷第 15 页,共 15 页设 g(a)=a( x21)x+1,a1,1则 g(1 )0,且 g(1) 0,即( x21)x+10,且(x 21)x+10,即(x1 )(x+2)0,且 x(x1)0,解得2 x1,且 x1 或 x 0可得2 x0故 x 的取值范围是(2,0)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报