1、精选高中模拟试卷第 1 页,共 18 页革吉县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知命题 p:存在 x00,使 2 1,则p 是( )A对任意 x0,都有 2x1 B对任意 x0,都有 2x1C存在 x00,使 2 1 D存在 x00,使 2 12 在等差数列a n中,3( a3+a5)+2 (a 7+a10+a13)=24,则此数列前 13 项的和是( )A13 B26 C52 D563 如图,在正六边形 ABCDEF 中,点 O 为其中心,则下列判断错误的是( )A = B C D4 函数 f(x)在 x=x0 处导数存在,
2、若 p:f(x 0)=0:q:x=x 0 是 f(x)的极值点,则( )Ap 是 q 的充分必要条件Bp 是 q 的充分条件,但不是 q 的必要条件Cp 是 q 的必要条件,但不是 q 的充分条件Dp 既不是 q 的充分条件,也不是 q 的必要条件5 定义运算: ,ab例如 12,则函数 sincofxx的值域为( )A 2, B , C 2,1 D1,6 圆 ( )与双曲线 的渐近线相切,则 的值为( )22()xyr-+=0213yx-=rA B C D3【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力精选高中模拟试卷第
3、2 页,共 18 页7 若 ,则 等于( )A B C D8 复数 z= (mR,i 为虚数单位)在复平面上对应的点不可能位于( )A第一象限 B第二象限 C第三象限 D第四象限9 是第四象限角, ,则 sin=( )A B C D10设函数 f( x)是奇函数 f(x)(xR )的导函数,f(2)=0,当 x0 时,xf(x) f(x)0,则使得f(x)0 成立的 x 的取值范围是( )A(,2)(0,2) B( ,2)(2,+ ) C( 2,0) (2,+) D(2,0)(0,2)11执行如图的程序框图,则输出 S 的值为( )A2016 B2 C D112设复数 ( 是虚数单位),则复数
4、 ( )iz2zA. B. C. D. 1i12ii【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力二、填空题13若 a,b 是函数 f(x)=x 2px+q(p0,q0)的两个不同的零点,且 a,b,2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 p+q 的值等于 精选高中模拟试卷第 3 页,共 18 页14若直线 ykx1=0(kR)与椭圆 恒有公共点,则 m 的取值范围是 15设变量 x,y 满足约束条件 ,则 的最小值为 16设向量 =(1,3), =(2,4), =( 1,2),若表示向量 4 ,4 2 ,2( ), 的有向线
5、段首尾相接能构成四边形,则向量 的坐标是 17给出下列命题:(1)命题 p:;菱形的对角线互相垂直平分,命题 q:菱形的对角线相等;则 pq 是假命题(2)命题“若 x24x+3=0,则 x=3”的逆否命题为真命题(3)“ 1x3” 是“x 24x+30” 的必要不充分条件(4)若命题 p:xR,x 2+4x+50,则p: 其中叙述正确的是 (填上所有正确命题的序号)18一个算法的程序框图如图,若该程序输出的结果为 ,则判断框中的条件 im 中的整数 m 的值是 三、解答题19某校高一数学兴趣小组开展竞赛前摸底考试甲、乙两人参加了 5 次考试,成绩如下:第一次 第二次 第三次 第四次 第五次甲
6、的成绩 82 87 86 80 90乙的成绩 75 90 91 74 95()若从甲、乙两人中选出 1 人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;()若同一次考试成绩之差的绝对值不超过 5 分,则称该次考试两人“水平相当” 由上述 5 次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当” 的概率精选高中模拟试卷第 4 页,共 18 页20如图 1,在 RtABC 中,C=90,BC=3,AC=6,D、E 分别是 AC、AB 上的点,且 DEBC,将ADE 沿 DE 折起到 A 1DE 的位置,使 A1DCD,如图 2()求证:平面 A1BC平面 A1D
7、C;()若 CD=2,求 BD 与平面 A1BC 所成角的正弦值;()当 D 点在何处时,A 1B 的长度最小,并求出最小值21已知等差数列a n,等比数列 bn满足:a 1=b1=1,a 2=b2,2a 3b3=1()求数列a n,b n的通项公式;()记 cn=anbn,求数列c n的前 n 项和 Sn精选高中模拟试卷第 5 页,共 18 页22设函数 f(x)=lnx ax2bx(1)当 a=2,b=1 时,求函数 f(x)的单调区间;(2)令 F(x)=f (x)+ ax2+bx+ (2x 3)其图象上任意一点 P(x 0,y 0)处切线的斜率 k 恒成立,求实数 a 的取值范围;(3
8、)当 a=0,b= 1 时,方程 f(x)=mx 在区间1,e 2内有唯一实数解,求实数 m 的取值范围23已知函数 f(x)=x 1+ (aR,e 为自然对数的底数)()若曲线 y=f(x)在点(1,f(1)处的切线平行于 x 轴,求 a 的值;()求函数 f(x)的极值;()当 a=1 的值时,若直线 l:y=kx 1 与曲线 y=f(x)没有公共点,求 k 的最大值24(本小题满分 13 分)椭圆 : 的左、右焦点分别为 、 ,直线 经过点 与椭圆 交于点C21(0)xyab1F2:1lxmy1FC,点 在 轴的上方当 时, Mm1|M精选高中模拟试卷第 6 页,共 18 页()求椭圆
9、的方程;C()若点 是椭圆 上位于 轴上方的一点, ,且 ,求直线 的方程Nx12/MFN123MFNSl精选高中模拟试卷第 7 页,共 18 页革吉县外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:命题 p:存在 x00,使 2 1 为特称命题,p 为全称命题,即对任意 x0,都有 2x1故选:A2 【答案】B【解析】解:由等差数列的性质可得:a 3+a5=2a4,a 7+a13=2a10,代入已知可得 32a4+23a10=24,即 a4+a10=4,故数列的前 13 项之和 S13= = =26故选 B【点评】本题考查等差数
10、列的性质和求和公式,涉及整体代入的思想,属中档题3 【答案】D【解析】解:由图可知, ,但 不共线,故 ,故选 D【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题4 【答案】C【解析】解:函数 f(x)=x 3 的导数为 f(x)=3x 2,由 f(x 0)=0,得 x0=0,但此时函数 f(x)单调递增,无极值,充分性不成立根据极值的定义和性质,若 x=x0 是 f(x)的极值点,则 f(x 0)=0 成立,即必要性成立,故 p 是 q 的必要条件,但不是 q 的充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基
11、础5 【答案】D精选高中模拟试卷第 8 页,共 18 页【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.6 【答案】C7 【答案】B【解析】解: , ,(1, 2)=m(1,1)+n(1, 1)=(m+n,m n)m+n= 1,mn=2,m= ,n= ,故选 B【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等8 【答案】C【解析】解:z= = = = + i,当 1+m0 且 1m0 时,有解:1m 1;当 1+m0 且 1m0 时,有解:m1;当 1+m0 且 1m0
12、时,有解:m1;精选高中模拟试卷第 9 页,共 18 页当 1+m0 且 1m0 时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题9 【答案】B【解析】解: 是第四象限角,sin= ,故选 B【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论10【答案】A【解析】解:设 g(x)= ,则 g(x)的导数为:g(x)= ,当 x0 时总有 xf(x) f( x)0 成立,即当 x0 时,g(x)0,当 x0 时,函数 g(x)为减函数,又 g( x)=
13、= = =g(x),函数 g(x)为定义域上的偶函数,x 0 时,函数 g(x)是增函数,又 g( 2)= =0=g( 2),x 0 时,由 f(x)0,得:g(x)g(2),解得:0x2,x0 时,由 f(x)0,得: g(x)g(2),解得:x2,f( x) 0 成立的 x 的取值范围是:(,2)(0,2)故选:A11【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0精选高中模拟试卷第 10 页,共 18 页满足条件 k2016,s=1,k=1满足条件 k2016,s= ,k=2满足条件 k2016,s=2k=3满足条件 k2016,s=1,k=4满足条件 k2016,s= ,k=
14、5观察规律可知,s 的取值以 3 为周期,由 2015=3*671+2,有满足条件 k2016,s=2,k=2016不满足条件 k2016,退出循环,输出 s 的值为 2故选:B【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的 s,k 的值,观察规律得到 s 的取值以3 为周期是解题的关键,属于基本知识的考查12【答案】A【解析】二、填空题13【答案】 9 【解析】解:由题意可得:a+b=p,ab=q,p 0,q0,可得 a0,b0,又 a,b,2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得 或 解得: ;解得: p=a+b=5,q=14=4 ,则 p+q=9
15、故答案为:914【答案】 1,5)(5,+) 精选高中模拟试卷第 11 页,共 18 页【解析】解:整理直线方程得 y1=kx,直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在 y 轴上,而该椭圆关于原点对称,故只需要令 x=0 有5y2=5m得到 y2=m要让点(0.1)在椭圆内或者椭圆上,则 y1 即是y21得到 m1椭圆方程中,m 5m 的范围是1,5)(5,+)故答案为1,5)(5,+ )【点评】本题主要考查了直线与圆锥曲线的综合问题本题采用了数形结合的方法,解决问题较为直观15【答案】 4 【解析】解:作出不等式组对应的平面区域,则 的几何意义为区域内
16、的点到原点的斜率,由图象可知,OC 的斜率最小,由 ,解得 ,即 C(4,1),此时 =4,故 的最小值为 4,故答案为:4精选高中模拟试卷第 12 页,共 18 页【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键16【答案】 (2, 6) 【解析】解:向量 4 ,4 2 ,2( ), 的有向线段首尾相接能构成四边形,则向量 =4 +4 2 +2( )=(6 +4 4 )= 6(1 , 3)+4(2,4)4( 1,2)=(2,6)=(2, 6),故答案为:(2, 6)【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题17【答
17、案】 (4) 【解析】解:(1)命题 p:菱形的对角线互相垂直平分,为真命题命题 q:菱形的对角线相等为假命题;则 pq 是真命题,故(1)错误,(2)命题“若 x24x+3=0,则 x=3 或 x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由 x24x+30 得 1x3,则“1x3”是“x 24x+3 0”的充要条件,故(3)错误,(4)若命题 p:xR,x 2+4x+50,则p: 正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题18【答案】 6 【解析】
18、解:第一次循环:S=0+ = ,i=1+1=2 ;精选高中模拟试卷第 13 页,共 18 页第二次循环:S= + = , i=2+1=3;第三次循环:S= + = , i=3+1=4;第四次循环:S= + = , i=4+1=5;第五次循环:S= + = , i=5+1=6;输出 S,不满足判断框中的条件;判断框中的条件为 i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题三、解答题19【答案】 【解析】解:()解法一:依题意有 , 答案一: 从稳定性角度选甲合适(注:按()看分数的标准,5 次考试,甲三次与乙相当,两次优于乙,
19、所以选甲合适答案二: 乙的成绩波动大,有爆发力,选乙合适解法二:因为甲 5 次摸底考试成绩中只有 1 次 90,甲摸底考试成绩不低于 90 的概率为 ;乙 5 次摸底考试成绩中有 3 次不低于 90,乙摸底考试成绩不低于 90 的概率为 所以选乙合适 ()依题意知 5 次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为 A,B,C “ 水平不相当”考试是第一次,第四次,记为 a,b从这 5 次摸底考试中任意选取 2 次有 ab,aA,aB,aC, bA,bB,bC ,AB,AC,BC 共 10 种情况恰有一次摸底考试两人“水平相当”包括共 aA,aB,aC ,bA ,bB ,bC 共
20、6 种情况5 次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当” 概率 精选高中模拟试卷第 14 页,共 18 页【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想20【答案】【解析】【分析】()在图 1 中,ABC 中,由已知可得:ACDE在图 2 中,DEA 1D,DEDC,即可证明DE平面 A1DC,再利用面面垂直的判定定理即可证明()如图建立空间直角坐标系,设平面 A1BC 的法向量为 ,利用 ,BE 与平面所成角的正弦值为 ()设 CD=x(0x6),则 A1D=6x,利用 =(0x6)
21、,即可得出【解答】()证明:在图 1 中,ABC 中,DE BC ,ACBC ,则 ACDE ,在图 2 中,DEA 1D,DEDC,又A 1DDC=D,DE平面 A1DC,DEBC,BC平面 A1DC,BC 平面 A1BC,平面 A1BC平面 A1DC()解:如图建立空间直角坐标系:A 1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),E(2,0,0)则 , ,设平面 A1BC 的法向量为则 ,解得 ,即则 BE 与平面所成角的正弦值为()解:设 CD=x(0x6),则 A1D=6x,在(2)的坐标系下有:A 1(0,0,6x),B(3,x,0), = = (0x6),即
22、当 x=3 时,A 1B 长度达到最小值,最小值为 精选高中模拟试卷第 15 页,共 18 页21【答案】 【解析】解:(I)设等差数列 an的公差为 d,等比数列b n的公比为 q: a1=b1=1,a 2=b2,2a 3b3=11+d=q,2(1+2d)q 2=1,解得 或 an=1,b n=1;或 an=1+2(n1 )=2n 1,b n=3n1(II)当 时,c n=anbn=1,S n=n当 时,c n=anbn=(2n 1)3 n1,Sn=1+33+532+(2n1)3 n1,3Sn=3+332+(2n3)3 n1+(2n 1)3 n,2Sn=1+2(3+3 2+3n1) (2n1
23、)3 n= 1(2n 1)3 n=(22n)3 n2,Sn=( n1)3 n+1【点评】本题考查了等差数列与等比数列的通项公式及其前 n 项和公式、“错位相减法” ,考查了推理能力与计算能力,属于中档题22【答案】 【解析】解:(1)依题意,知 f(x)的定义域为(0,+)当 a=2,b=1 时,f(x)=lnxx 2x,f(x)= 2x1= 精选高中模拟试卷第 16 页,共 18 页令 f(x)=0,解得 x= 当 0x 时,f(x)0,此时 f(x)单调递增;当 x 时,f(x)0,此时 f(x)单调递减所以函数 f(x)的单调增区间( 0, ),函数 f(x)的单调减区间( ,+)(2)
24、F(x)=lnx+ ,x2,3,所以 k=F(x 0)= ,在 x02 ,3上恒成立,所以 a( x02+x0) max,x 02,3 当 x0=2 时, x02+x0 取得最大值 0所以 a0(3)当 a=0,b= 1 时,f (x)=lnx+x ,因为方程 f(x)=mx 在区间1,e 2内有唯一实数解,所以 lnx+x=mx 有唯一实数解m=1+ , 设 g(x)=1+ ,则 g(x)= 令 g(x)0,得 0xe ; g(x)0,得 xe ,g( x)在区间1,e上是增函数,在区间 e,e 2上是减函数,1 0 分g( 1)=1 ,g(e 2)=1+ =1+ ,g(e )=1+ ,所以
25、 m=1+ ,或 1m1+ 23【答案】 【解析】解:()由 f(x) =x1+ ,得 f(x)=1 ,又曲线 y=f(x)在点(1,f( 1)处的切线平行于 x 轴,精选高中模拟试卷第 17 页,共 18 页f(1)=0,即 1 =0,解得 a=e()f (x)=1 ,当 a0 时, f(x)0,f(x)为(,+)上的增函数,所以 f(x)无极值;当 a0 时,令 f(x)=0 ,得 ex=a,x=lna,x(,lna ),f (x)0 ;x(lna,+),f(x)0;f( x)在 ( ,lna)上单调递减,在(lna,+)上单调递增,故 f(x)在 x=lna 处取到极小值,且极小值为 f
26、(lna)=lna,无极大值综上,当 a0 时,f(x)无极值;当 a0 时,f (x)在 x=lna 处取到极小值 lna,无极大值()当 a=1 时,f(x)=x1+ ,令 g(x)=f(x)( kx1)=(1k)x+ ,则直线 l:y=kx 1 与曲线 y=f( x)没有公共点,等价于方程 g(x)=0 在 R 上没有实数解假设 k1,此时 g(0)=10,g( )=1+ 0,又函数 g(x)的图象连续不断,由零点存在定理可知 g(x)=0 在 R 上至少有一解,与“方程 g(x)=0 在 R 上没有实数解”矛盾,故 k1又 k=1 时,g(x)= 0,知方程 g(x)=0 在 R 上没有实数解,所以 k 的最大值为 124【答案】 【解析】解:()由直线 经过点 得 ,:1lxmy1Fc当 时,直线 与 轴垂直, ,0ml2|bMa由 解得 ,椭圆 的方程为 (4 分)21cba21abC21xy()设 , ,由 知 .12(,)(,)MxyN120,y12/FN1212|3MFSy精选高中模拟试卷第 18 页,共 18 页联立方程 ,消去 得 ,解得21xmyx2()10my2(1)my ,同样可求得 , (11 分)12()y 22()由 得 , ,解得 ,231y2(1)131直线 的方程为 (13 分)l0x