收藏 分享(赏)

钢筋混凝土的资料.doc

上传人:eukav 文档编号:9501291 上传时间:2019-08-10 格式:DOC 页数:38 大小:98.50KB
下载 相关 举报
钢筋混凝土的资料.doc_第1页
第1页 / 共38页
钢筋混凝土的资料.doc_第2页
第2页 / 共38页
钢筋混凝土的资料.doc_第3页
第3页 / 共38页
钢筋混凝土的资料.doc_第4页
第4页 / 共38页
钢筋混凝土的资料.doc_第5页
第5页 / 共38页
点击查看更多>>
资源描述

1、钢筋混凝土的资料钢筋混凝土的资料.txt 女人谨记:一定要吃好玩好睡好喝好。一旦累死了,就别的女人花咱的钱,住咱的 房,睡咱的老公,泡咱的男朋友,还打咱的娃。 本文由 xiaolaohu817 贡献pdf 文档可能在 WAP 端浏览体验不佳。建议您优先选择 TXT,或下载源文件到本机查看。第二章 钢筋混凝土结构的 基本问题第一节 结构设计与计算的基本要求 1.1 结构的功能要求任何一个工程结构都要求用最经济的人力和物力 消耗来获得能够满足全部功能要求的足够可靠的 结构。结构的这些基本功能要求集中体现为对安 全性、适用性和耐久性的要求上。 安全性指结构能承受正常施工、正常使用时可能 出现的各种荷

2、载或作用力。在偶然荷载(或作用 力)的作用下,或者偶然事件发生时或发生后, 仍能保持结构的整体稳定性。第一节 结构设计与计算的基本要求 1.1 结构的功能要求适用性指结构在正常使用荷载作用下具有良好 的工作性能,如不发生影响正常使用的过大变 形和振幅;或不发生引起使用者不安的裂缝宽 度等等。 耐久性指结构在正常使用和正常维护条件下, 在规定使用期限内具有足够的耐久性,如不发 生由于保护层碳化或裂纹过宽导致钢筋锈蚀; 不发生混凝土严重风化、腐蚀、老化而影响结 构的使用寿命等。这些功能要求概括起来可称为结构的可靠性, 即结构在规定设计基准期内在规定条件下(正 常设计、正常施工、正常使用和正常维修)

3、完 成全部功能的能力。可靠度是结构可靠性的定 量描述,即结构在规定时间内在规定条件下, 完成预定功能的概率,可靠性越高,失效的可 能性越小。因此,人们常常用失效概率来描述 结构的安全度。这些功能要求概括起来可称为结构的可靠性,即结构在规 定设计基准期内在规定条件下(正常设计、正常施工、正 常使用和正常维修)完成全部功能的能力。可靠度是结构 可靠性的定量描述,即结构在规定时间内在规定条件下, 完成预定功能的概率,可靠性越高,失效的可能性越小。 因此,人们常常用失效概率来描述结构的安全度。 失效概率指结构在一定使用年限内失去效用或者达到某种 不适用的极限状态的概率。所谓安全度指结构在一定的使 用年

4、限内,在预定条件下完成规定功能的概率,或者其失 效概率在可接受的范围内。毫无疑问,在结构设计、分析和确定维修、加固、改 造方案时,增大设计的余量(如增大截面尺寸、配筋 量和提高材料性能)总能满足功能要求,但是结构造 价势必增加,导致结构的整体使用效益降低。因此探 索科学的设计和分析方法,在结构可靠性和经济性之 间寻求最佳方案是结构设计和分析要解决的基本问题 和最终目的。1.2 结构的极限状态某一结构能够满足功能要求而且能够很好地工作,称为结 构“可靠”或“有效” ,反之则称结构“不可靠”或“失 效” 。区分结构可靠与失效的标志是“极限状态” 。 整个结构或者构件超过某一个特定状态时(如达到极限

5、承 载力,失稳、变形过大、裂纹过宽等等)而不能满足设计 规定的某一项功能要求时,此特定状态称为该功能的极限 状态。 根据功能要求,结构的极限状态可分为两类:承载能力极 限状态和正常使用极限状态。承载能力极限状态指结构或构件达到最大承载能力、发生疲劳破坏或达到不适于继续承载的变形。当结构或构件出现 下列状态之一时,即认为超过了承载能力极限状态: 结构构件因应力超过材料强度而破坏(包括疲劳破坏) ,或 因过度的塑性变形而不适于继续承载; 整个结构或结构的一部分作为刚体失去平衡(如滑移或倾覆 等) ; 随着荷载增大,结构的某些部位受力性能发生变化(如产生 塑性转动) ,使结构变成为机动体系而丧失承载

6、能力; 结构或构件因达到临界荷载而丧失稳定。正常使用极限状态指结构或构件达到正常使用或耐久性能的某项规定限值的状态。当结构或构件出现下列状态之一时,即认为超 过了正常使用极限状态: 出现影响正常使用或外观的变形; 出现影响正常使用或耐久性能的局部破坏,例如裂缝宽度超过了保 证耐久性要求的允许限值; 出现影响正常使用的振动; 出现影响正常使用的其他特定状态。 当结构或构件达到正常使用极限状态时,虽然影响结构的耐久性或 使人们产生不能接受的感觉,但一般不会导致人身伤害或重大经济 损失。因此,通常是按承载能力极限状态设计或分析结构构件,再 按正常使用极限状态校核该构件。第二节 结构设计与分析方法结构

7、设计与分析实际上就是要寻求恰当的方法来处理结构可靠性(可 靠度、安全度)与经济性的关系。在满足结构可靠性和经济性要求的 前提下,确定一种合理的结构设计或分析方法。 历史上早期的结构承载能力设计计算方法全凭经验,以直接的荷载试 验来确定。16 世纪末, Galieo 制作了世界上第一台实验机用于结构试 验和设计研究。19 世纪末以来,由于弹性力学、材料科学的发展,出 现了基于弹性理论的允许应力设计方法,Navier、Poncelet 提出了允 许应力方法应用于钢筋混凝土结构设计,并被广泛应用。设计思想: = 材料的设计应力; R 材料的极限强度; K 安全系数; 材料的允许应力值。R K二十世纪

8、四十年代,人们认识了钢筋混凝土的塑性性能后,提出了 破损阶段的设计方法。截面承载能力 R 以实验得到的材料统计平均 强度为基础,考虑混凝土的弹塑性性质,考虑以经验为主的承载能 力安全系数 K ,要求由最大载荷产生的结构内力 KS 不大于截面极 限承载能力 R。这种方法也称最大载荷方法。表达式为:KS R = ( Rc , Rs , m)其中S标准载荷产生内力;Rc , Rs 混凝土和钢筋的平均强度;mK截面特征; 安全系数。以上两种方法都采用材料强度和荷载为定值,并用定值的安全系数来 确定结构的安全储备,安全系数 K 是根据经验人为确定的。 进入五十年代后,人们逐渐认识到使用期限内荷载效应和材

9、料性质的 变异性,认识到结构承载能力是非定值的。为此,美国、前苏联等学 者分别提出极限状态设计计算方法。表达式为:n Sii R = ( K c Rc , K s Rs , m, w)式中:ni 超载系数; Si 标准载荷产生的内力;K c , K s 材料的均值系数; Rc , Rs 混凝土和钢筋的标准强度;m截面特征值;w 工作条件系数。该方法是破损阶段设计方法的进一步发展。它用考虑荷载、材料和工 作条件等方面不确定影响的三个分项系数代替了单一的安全系数。在 材料荷载和材料强度取值上引入统计数学方法,将影响结构安全度的 因素反映在荷载和材料取值上。但是实际应用时不少载荷还是根据经 验确定,

10、该模型属于半概率、半经验的极限状态设计计算方法。 许多国家结构设计规范是基于该思想方法。如我国钢筋混凝土结构 设计规范 (GBJ-66, TJ10-74)都是属于这种极限状态设计方法。六十年代以后,欧洲国际混凝土委员会(CEB) 、国际预应力 混凝土联合会(FIP) 、国际标准化组织(ISO)等也先后提出了 半概率、半经验的极限状态设计方法。此后,美国 Cornell 等人提 出用系数 作为结构安全指标的近似概率设计方法。 1976 年欧洲国际混凝土委员会(CEB) 、国际建筑研究与文献 研究会(CIB) 、国际预应力混凝土联合会(FIP) 、国际桥梁与 结构工程协会(IABSE) 、国际材料

11、与结构实验研究所联合会 (RJLEM)和国际标准化组织(ISO)制定了以半概率和近似概 率理论为基础的“结构安全度规程” 。 在此基础上,1980 年美国国家标准局建议了以“概率极限状态设 计理论”为基础的美国国家标准,提供了荷载规范、各种结构荷 载分项系数、荷载组合系数和安全指标,同时推荐了为各种材料 结构规范确定相应结构抗力分项系数的方法,建立一套“结构概 率极限状态设计计算方法” 。事实上,允许应力设计方法、破损阶段设计法和极 限状态设计法,从可靠度方面看,均属于定值安全系数 法。不同点是前两种方法在确定安全系数时,完全依赖 经验,第三种方法是部分依赖统计资料。极限状态设计 计算方法是结

12、构设计由经验方法向概率方法的过渡,应 当发展概率设计方法。目前世界各国都在应用概率极限状态设计法。该方法运用概率论方法 对结构可靠性的量度给出了科学的定义,明确提出了结构可靠度的定 义及可靠度的计算方法,对结构可靠度的概率做了估计。该方法虽还 有一定的近似性,但世界各国基本采用了这个设计思想和方法。 我国建筑结构荷载规范和混凝土结构设计规范就是采用这种 概率极限状态设计理论。其中,设计表达式仍然用半概率半经验的分 项系数的表达形式,在部分因素的计算中引入了统计和概率的方法。任何一个结构的设计、分析和计算无外乎确定结构 作用力、结构响应、材料性能、设计与分析计算准 则等四方面的基本内容。 以下我

13、们将逐一介绍在概率极限状态设计和计算的 基本原则下,钢筋混凝土结构的作用力、结构响应、 材料性能如何取值,以及如何根据概率极限状态法 确定结构的可靠性。第三节 结构的作用、作用效应与结构抗力3.1 作用的概念与类型 作用是指使结构产生内力、变形、应力和应变的所有原因。 一般来讲,作用在钢筋混凝土结构上的作用力不外乎以下 两种:直接作用和间接作用。 1. 直接作用:以力的形式直接作用于结构产生内力效应的 外部作用,通常称为荷载。包括:结构重力荷载(构件自 重、构造层、装饰的重量等) 、楼面使用荷载(人群、图 书、家具、设备等) 、雪荷载、风荷载以及施工荷载等。第三节 结构的作用、作用效应与结构抗

14、力2. 间接作用:由于某种原因使结构或构件产生约束变形或附加变形, 产生内力效应,这种原因常称为间接作用,它是以形变方式作用于 结构的。这类作用包括:沉降作用、温差作用、地震作用、混凝土 收缩作用等。沉降作用指由于基础发生不均匀沉降致使结构产生外 加变形,引起内力效应。温差作用指在温度变化环境中,由于温度 差使结构产生约束变形,引起内力作用。地震作用指由于地震引起 地表运动,使结构产生加速度反应和附加变形,引起惯性力,产生 内力效应。收缩作用指由于混凝土水化作用和水分挥发导致混凝土 体积不均匀收缩,产生内部拉应力,使混凝土开裂。第三节 结构的作用、作用效应与结构抗力作用按其随时间的变异性和出现

15、的可能性不同,又可以 分为永久作用力、可变作用力和偶然作用力等三类。 永久作用力指作用力基本不随时间变化,或者其变化与 平均值相比可忽略不计,如自重荷载等。 可变作用力指作用力随时间变化而变化,如楼面活荷载、 风荷载、雪荷载等。 偶然作用力指偶然出现的、持续时间短、作用强的作用 力,如地震作用等。在采取概率极限状态设计和计算方法进行结构设计、分析和计 算时,应当如何来确定这些作用力呢? 目前即使在有较完整的资料情况下,仍然很难准确定量地给出 这些荷载(作用)大小。原因是作用在结构上的这些荷载(作 用)与结构物所处地区、选用的材料、使用状态以及时间等多 种复杂因素直接相关,而这些因素往往是随机的

16、。因此,在结 构设计、分析和计算中所选用的荷载或者作用是一种在正常条 件下可能出现的最大值,一般称为标准值。这种标准值是在概 率统计意义上,可以被绝大多数人接受的最大估计值。这种标 准值的确定. 一般来讲,对于三类不同作用力(永久、可变和 偶然作用) ,出现大于其标准值情况的概率是不同的。3.2 荷载的取值3.2.1 荷载的随机性质荷载(或直接作用)是一种具有随机性质的不确定变量,必须用概率 模型来描述。一般来讲,荷载可看作一个随机过程。多数可变荷载 (或作用)是典型的随时间变化的随机变量,如办公室楼面活荷载。 在建筑物预期使用年限内楼面活荷载的分布是一条随时间变化的曲线 (如图 1) 。(楼

17、面活荷载可以看作为“持久活荷载”和“临时活荷载”的叠加)常用下列几种随机过程模型来描述可变荷载:1. 平稳二项随机过程模型假定可变荷载为平稳的二项随机过程Q (t ),0 t T , 0,T可以划 分 为 r 个 相 等 的 时 间 段 i ; 在 任 意 一 个 时 间 段 i = ti ti 1 ( i=1,2, ,r ) 内 , Q (t ) = S (ti ) 0 (ti T ) 的 概 率 为 p ,S (ti ) = 0 (ti i ) 的概率为 q = 1 p , 在时间段内任意时刻随机变量S (ti ) (ti i , i = 1, 2, 3 r ) 相互独立, 且服从同一概率

18、分布 F (x ) ;在每一个时段i内,Q (t ) 出现与否跟任意时点随机变量无关。运用该随机过程模型,活荷载的样本函数为等间距的矩形波函数, 如下图所示。我国建筑结构可靠度设计统一标准是采用该平稳二项随机过程 模型来模拟和确定可变荷载的随机性质。2. Poisson 方形波随机模型假定可变荷载在设计基准期内,经一次变动之后要相对持续一段时 间,变动次数 N t 为 k 的概率服从 Poisson 分布。表达式为: T k T P( N t = k ) = e k!k = 0, 1, 2其中: k 荷载在设计基准期内的变动次数; 荷载的平均变动率或出现率(次/年) ;T结构的设计基准期。运用

19、该随机过程模型,活荷载的样本 函数如右图所示:上述荷载随机过程的统计分 析较复杂,从实用的角度出 发,可以将荷载随机过程转 化为具有相同统计特征的荷 载随机变量来反映可变荷载 的随机性质。 例如,假定荷载随机过程在 时间、空间上为均匀过程, 那么整个随机过程任意区间 的荷载随时间变化的情况就 可以用不同时段(或不同载 荷历程)在某一个时刻观察 到的荷载分布代替。3.2.2 荷载(作用)的取值方法 荷载(作用)代表值 考虑到荷载的随机性质,在结构设计时,应根据各种极限状态的要 求取用不同的荷载数值,即荷载代表值。该值是根据对各种荷载的统计 调查,经前述的概率统计方法处理,得到荷载概率分布函数和统

20、计参数 后确定的。 建筑结构可靠度设计统一标准 (GB50068-2001)给出 了三种代表值:标准值、准永久值和组合值。 荷载标准值 指在结构使用期间,正常情况下可能出现的最大荷载。它是荷载的基本代表值。由于荷载的随机性质,荷载标准值取值应有一定 的保证率,即超过标准值的荷载的概率要小于某允许值。荷载标准值应 当根据统计资料由统计分析获得。取值原则是:对于永久荷载取其概率 分布的某一分位值作为它的标准值;对于可变荷载,理论上,应当由设 计基准期内最大荷载概率分布的上限分位值确定。荷载标准值通用表达式为:Qk = Q + Q Q = Q (1 + Q Q )式中:Q Q Q荷载平均值;Q荷载标

21、准差;荷载变异系数, Q = Q / Q 荷载标准值的保证率系数。国际 ISO 建议取 Q = 1.645 , 相当于具有 95%保证率的上限分位值。建筑结构可靠度设计统一标准对荷载标准值的取值方法是:永久荷载标准值:对结构自重等可以认为是永久荷载的(变异性 不大) ,按结构构件的设计尺寸与材料单位体积的自重计算确定。对 于某些自重变异较大的材料和构件(如现场制作的保温材料、混凝土 薄壁构件等) ,自重的标准值应根据对结构的影响状态(不利或有 利) ,取上限值或下限值。 按上述方法确定的永久荷载标准值一般相当于永久荷载实际概率 分布的平均值。然而,实际统计表明:象屋面板、楼板等板类构件常 常存

22、在超重现象,实测平均值是标准值 Qk 的 1.06 倍。尽管如此,当超 重不算太多时,工程上是可以接受的。可变荷载标准值:根据对我国民用建筑活荷载(楼面荷 载、风荷载、雪荷载等)的统计调查,得到这些可变荷 载的最大荷载概率分布函数和统计参数。 统一标准考虑可变荷载的概率分布特征,依据Qk = Q + Q Q = Q (1 + Q Q )取荷载荷载的平均值加 1.5 倍的标准差作为可变荷载标准 值。这种做法考虑了我国新旧规范的衔接,以避免经济 指标的较大波动。荷载准永久值(可变荷载的准永久值)指可变荷载在结构使用期内经常达到或超过的荷载值,它是可变荷载 在正常使用极限状态按长期效应组合设计时采用

23、的荷载代表值,它对 结构的影响在性质上仅次于永久荷载,并有类似于永久荷载的长期作 用性质。可变荷载准永久值是根据在设计基准期内,荷载达到或超过 该值的总持续时间与设计基准期的比值等于 0.5 的条件确定的。 可变荷载准永久值实质上是考虑可变荷载的长期作用效应而对可变荷 载标准值的一种折减。我们将可变荷载的准永久值写成为:Qq = q QK其中: Qq 可变荷载的准永久值;QK 可变荷载的标准值; q 准永久值系数。各种荷载准永久值系数取值根据可靠度统一标准采用。可变荷载准永久值取值示意图组合值(可变荷载组合值) 当有两种或两种以上可变荷载同时作用在结构上时,需要 考虑荷载组合效应。由于所有可变

24、荷载同时达到其单独存 在时最大值的可能性极小,因此,除了主要荷载(产生最 大效应的荷载)仍按标准值取值作为其代表值外,其他可 变荷载取小于其标准值的组合值为其代表值。可变荷载组 合值表达为:Qc = c QK其中: Qc 可变荷载的组合值;QK 可变荷载的标准值; c 可变荷载组合系数。各种可变荷载的组合系数可根据可靠度设计统一标准采用。3.3 作用效应 作用效应 指结构或构件在前面讲到的各种作用因素的作用下所 产生的内力和变形(也称结构或构件的响应) ,如轴 力、弯矩、剪力、扭矩、挠度、转角,裂缝等等。我 们称这种内力和变形(也就是作用的结果)为“作用 效应” ,用 S 表示。当作用为荷载时

25、,效应也称作 “荷载效应” 。3.3 作用效应由前面的分析我们知道,由于结构上的作用是一个不确定的随机变 量,它随时间、地点和各种条件而异发生变化。因此,作用效应 S 一般来讲也是一个随机变量。 荷载 Q 与荷载效应 S 之间具有一种函数对应关系,可表示为:S = f (Q )当函数 f 近似为线性关系时,荷载作用与荷载效应关系简化为:S = CQ式中: Q 某种荷载; S 荷载效应; C 荷载效应系数。3.4 结构抗力结构抗力 指结构和构件承受内力和变形(作用效应) 的能力,如构件和结构的承载能力、刚度等。它是由材 料性质、构件几何形式以及结构组成方式所决定,是构 件或结构的“内在特性” 。

26、通常用 R 表示。然而实际 工程中,由于材料强度、构件几何特征(尺寸偏差、局 部缺陷等)和抗力计算模型的不确定性,导致结构抗力 也是一个随机变量。 结构构件的工作状态可以用作用效应 S 和结构抗力 R 之间的关系来描述。一般可以写成极限平衡状态方程: S=R3.4 结构抗力若以功能函数 Z=R-S=g(R, S) 来描述结构的工作状态, 按 Z 大小不同,结构处于以下三种不同的工作状态: Z0 时,结构处于可靠状态; Z=0 时,结构处于极限平衡状态 Z 0 (ti T ) 的 概 率 为 p ,S (ti ) = 0 (ti i ) 的概率为 q = 1 p , 在时间段内任意时刻随机变量S

27、 (ti ) (ti i , i = 1, 2, 3 r ) 相互独立, 且服从同一概率分布 F (x ) ;在每一个时段i内,Q (t ) 出现与否跟任意时点随机变量无关。运用该随机过程模型,活荷载的样本函数为等间距的矩形波函数, 如下图所示。我国建筑结构可靠度设计统一标准是采用该平稳二项随机过程 模型来模拟和确定可变荷载的随机性质。2. Poisson 方形波随机模型假定可变荷载在设计基准期内,经一次变动之后要相对持续一段时 间,变动次数 N t 为 k 的概率服从 Poisson 分布。表达式为: T k T P( N t = k ) = e k!k = 0, 1, 2其中: k 荷载在

28、设计基准期内的变动次数; 荷载的平均变动率或出现率(次/年) ;T结构的设计基准期。运用该随机过程模型,活荷载的样本 函数如右图所示:上述荷载随机过程的统计分 析较复杂,从实用的角度出 发,可以将荷载随机过程转 化为具有相同统计特征的荷 载随机变量来反映可变荷载 的随机性质。 例如,假定荷载随机过程在 时间、空间上为均匀过程, 那么整个随机过程任意区间 的荷载随时间变化的情况就 可以用不同时段(或不同载 荷历程)在某一个时刻观察 到的荷载分布代替。3.2.2 荷载(作用)的取值方法 荷载(作用)代表值 考虑到荷载的随机性质,在结构设计时,应根据各种极限状态的要 求取用不同的荷载数值,即荷载代表

29、值。该值是根据对各种荷载的统计 调查,经前述的概率统计方法处理,得到荷载概率分布函数和统计参数 后确定的。 建筑结构可靠度设计统一标准 (GB50068-2001)给出 了三种代表值:标准值、准永久值和组合值。 荷载标准值 指在结构使用期间,正常情况下可能出现的最大荷载。它是荷载的基本代表值。由于荷载的随机性质,荷载标准值取值应有一定 的保证率,即超过标准值的荷载的概率要小于某允许值。荷载标准值应 当根据统计资料由统计分析获得。取值原则是:对于永久荷载取其概率 分布的某一分位值作为它的标准值;对于可变荷载,理论上,应当由设 计基准期内最大荷载概率分布的上限分位值确定。荷载标准值通用表达式为:Q

30、k = Q + Q Q = Q (1 + Q Q )式中:Q Q Q荷载平均值;Q荷载标准差;荷载变异系数, Q = Q / Q 荷载标准值的保证率系数。国际 ISO 建议取 Q = 1.645 , 相当于具有 95%保证率的上限分位值。建筑结构可靠度设计统一标准对荷载标准值的取值方法是:永久荷载标准值:对结构自重等可以认为是永久荷载的(变异性 不大) ,按结构构件的设计尺寸与材料单位体积的自重计算确定。对 于某些自重变异较大的材料和构件(如现场制作的保温材料、混凝土 薄壁构件等) ,自重的标准值应根据对结构的影响状态(不利或有 利) ,取上限值或下限值。 按上述方法确定的永久荷载标准值一般相

31、当于永久荷载实际概率 分布的平均值。然而,实际统计表明:象屋面板、楼板等板类构件常 常存在超重现象,实测平均值是标准值 Qk 的 1.06 倍。尽管如此,当超 重不算太多时,工程上是可以接受的。可变荷载标准值:根据对我国民用建筑活荷载(楼面荷 载、风荷载、雪荷载等)的统计调查,得到这些可变荷 载的最大荷载概率分布函数和统计参数。 统一标准考虑可变荷载的概率分布特征,依据Qk = Q + Q Q = Q (1 + Q Q )取荷载荷载的平均值加 1.5 倍的标准差作为可变荷载标准 值。这种做法考虑了我国新旧规范的衔接,以避免经济 指标的较大波动。荷载准永久值(可变荷载的准永久值)指可变荷载在结构

32、使用期内经常达到或超过的荷载值,它是可变荷载 在正常使用极限状态按长期效应组合设计时采用的荷载代表值,它对 结构的影响在性质上仅次于永久荷载,并有类似于永久荷载的长期作 用性质。可变荷载准永久值是根据在设计基准期内,荷载达到或超过 该值的总持续时间与设计基准期的比值等于 0.5 的条件确定的。 可变荷载准永久值实质上是考虑可变荷载的长期作用效应而对可变荷 载标准值的一种折减。我们将可变荷载的准永久值写成为:Qq = q QK其中: Qq 可变荷载的准永久值;QK 可变荷载的标准值; q 准永久值系数。各种荷载准永久值系数取值根据可靠度统一标准采用。可变荷载准永久值取值示意图组合值(可变荷载组合

33、值) 当有两种或两种以上可变荷载同时作用在结构上时,需要 考虑荷载组合效应。由于所有可变荷载同时达到其单独存 在时最大值的可能性极小,因此,除了主要荷载(产生最 大效应的荷载)仍按标准值取值作为其代表值外,其他可 变荷载取小于其标准值的组合值为其代表值。可变荷载组 合值表达为:Qc = c QK其中: Qc 可变荷载的组合值;QK 可变荷载的标准值; c 可变荷载组合系数。各种可变荷载的组合系数可根据可靠度设计统一标准采用。3.3 作用效应 作用效应 指结构或构件在前面讲到的各种作用因素的作用下所 产生的内力和变形(也称结构或构件的响应) ,如轴 力、弯矩、剪力、扭矩、挠度、转角,裂缝等等。我

34、 们称这种内力和变形(也就是作用的结果)为“作用 效应” ,用 S 表示。当作用为荷载时,效应也称作 “荷载效应” 。3.3 作用效应由前面的分析我们知道,由于结构上的作用是一个不确定的随机变 量,它随时间、地点和各种条件而异发生变化。因此,作用效应 S 一般来讲也是一个随机变量。 荷载 Q 与荷载效应 S 之间具有一种函数对应关系,可表示为:S = f (Q )当函数 f 近似为线性关系时,荷载作用与荷载效应关系简化为:S = CQ式中: Q 某种荷载; S 荷载效应; C 荷载效应系数。3.4 结构抗力结构抗力 指结构和构件承受内力和变形(作用效应) 的能力,如构件和结构的承载能力、刚度等

35、。它是由材 料性质、构件几何形式以及结构组成方式所决定,是构 件或结构的“内在特性” 。通常用 R 表示。然而实际 工程中,由于材料强度、构件几何特征(尺寸偏差、局 部缺陷等)和抗力计算模型的不确定性,导致结构抗力 也是一个随机变量。 结构构件的工作状态可以用作用效应 S 和结构抗力 R 之间的关系来描述。一般可以写成极限平衡状态方程: S=R3.4 结构抗力若以功能函数 Z=R-S=g(R, S) 来描述结构的工作状态, 按 Z 大小不同,结构处于以下三种不同的工作状态: Z0 时,结构处于可靠状态; Z=0 时,结构处于极限平衡状态 Z0 时,结构处于失效状态。 式中 Z 函数值反映了“扣

36、除”荷载效应以后结构内部 具有的“剩余抗力” 。不难看出,由于 S, R 都是随机 变量,函数 Z 也是一个非确定的随机变量问题。3.5 材料强度的变异性及其取值材料强度是决定结构抗力的主要因素,材料强度取值是否合理将直接 影响结构的可靠度和经济效果。下面我们分析材料强度的取值问题。 材料强度的变异性:钢筋混凝土工程中,按同一标准制作的钢筋和混 凝土,各批之间的强度不同,即使是同炉炼制的钢筋、同一次拌和的 混凝土,其强度也有差异。这种现象称为材料强度的变异性。按照结 构可靠性设计要求,在结构设计和分析计算中必须采用材料强度的标 准值。材料强度的标准值就是在正常情况下可能出现的最小材料强度。 根据概率分析理论,材料强度标准值要根据材料强度概率分布的某一 分位值(下限分位值)确定,也就是说,材料强度标准值应具有不小 于 95% 的保证率。该值由下式决定:f k = f (1 f ) 式中: f k 材料强度标准值, f 材料强度的平均值; f 材料强度的变异系数;保证率对应系数(分位值) 。钢筋强度标准值国家标准混凝土结构设计规范考虑了钢筋屈服强度的统计

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报