收藏 分享(赏)

第四章 稳定性分析——劳斯判据(4-1)...ppt

上传人:精品资料 文档编号:9437456 上传时间:2019-08-07 格式:PPT 页数:22 大小:237.50KB
下载 相关 举报
第四章  稳定性分析——劳斯判据(4-1)...ppt_第1页
第1页 / 共22页
第四章  稳定性分析——劳斯判据(4-1)...ppt_第2页
第2页 / 共22页
第四章  稳定性分析——劳斯判据(4-1)...ppt_第3页
第3页 / 共22页
第四章  稳定性分析——劳斯判据(4-1)...ppt_第4页
第4页 / 共22页
第四章  稳定性分析——劳斯判据(4-1)...ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、1,第四章 控制系统的稳定性分析,上海交通大学自动化系 田作华 Z,2,第一节 稳定性的基本概念 一、系统的稳定性如果一个线性定常系统在扰动作用消失后,能够恢复到原始的平衡状态,即系统的零输入响应是收敛的,则称系统是稳定的。反之,若系统不能恢复到原始的平衡状态,即系统的零输入响应具有等幅震荡或发散性质,则称系统是不稳定的。,第四章 控制系统的稳定性分析,3,例:稳定系统 不稳定系统定义表明:线性系统的稳定性仅取决于系统自 身的固有特性,而与外界条件无关。设系统在初始条件为零,输入为单位脉冲函 数,即R(S)=1。当t0时, =0,这相当于系 统在扰动信号作用下,输出信号偏离原平衡工作点 的问题

2、。若时,这时系统的输出为脉冲响应即输出增量收敛于原平衡工作点,线性系统稳定 。,4,二、线性系统稳定的充要条件 设闭环系统的传递函数 令 为系统特征方程 的根,而 彼此不等。干扰为理想脉冲函数:则,5,上式表明:1。当且仅当系统的特征根全部具有负实部(和均小于 零),即特征根的位置分布在S平面的左半部时,才能成 立,此时系统在扰动消失后能恢复到原来的平衡状态,则系 统是稳定的。2。若特征根中有一个或一个以上正实部根,即根的位 置分布在S平面的右半部,则,表明系统不稳定;3。若特征根中具有一个或一个以上实部的根为零(虚 根),即根的位置正好分布在S平面的虚轴上,而其余的根 均位于S平面的左半部,

3、此时系统处于临界稳定状态,输出 呈等幅振荡,系统在扰动信号消失后也不能恢复到原来的平 衡位置,按照稳定性定义,也属于不稳定系统。,6,结论:线性系统稳定的充要条件是:闭环系统特征方程的所有根均具 有负实部;或者说,闭环传递函数的 极点均分布在平面的左半部。,7,系统是否稳定 特征方程根的分布方程的系数 。劳斯稳定判据就是根据特征方程的系数来分析系统的稳定性的一种判据,它避免了直接求特征方程根的繁琐过程。劳斯稳定判据一般简称为劳斯判据。,第二节 劳斯稳定判据,8,设 线性系统的特征方程为:由代数知识可知:方程的所有根均分布在左半平面的必要条件是:特征方程所有系数均为正数。(若均为负数,方程两边同

4、乘以-1,使之也变为正数),即若特征方程中任一系数为负或缺项(系数为零),则可断定此系统为不稳定系统。,9,1劳斯判据 应用劳斯判据分析系统的稳定性步骤: 第一步:将特征方程式的系数按下列规则排成两行,即第二步:建立劳斯表(又叫劳斯阵列)。 例:五阶系统,其特征方程:,10,第三步:根据劳斯判据判别系统的稳定性。 劳斯判据:线性系统稳定的充要条件是:劳斯表中第一列各值为正,则系统稳定;若劳斯表中第一列出现负值,则系统不稳定,且实部为正(即分布在平面右半部)的根的数目,等于劳斯表中第一列系数符号改变的次数。,11,例:系统的特征方程: 试用劳斯判据判别其稳定性。 解:列出劳斯表 劳斯表中第一列元

5、素无符号变化,说明该系统特征方程没有正实部根,所以系统稳定。,12,例:系统的特征方程为:试用劳斯判据判别其稳定性。解: 列出劳斯表因为劳斯表中第一列元素的符号变化两次,说明 该系统有两个特征方程的根在右半s平面,所以系统 不稳定。,13,2劳斯判据的两种特殊情况 (1)劳斯表中某一行第一项元素为零,其余项不为零或不全为零,此时,用一个任意小的正数 代替这个零,然后按通常的规则继续完成劳斯表中其余各项元素的计算。如果零( )上面这项系数符号与零( )下面这项系数符号相反,表明这里有一个符号变化。 例:特征方程如下:试用劳斯判据判别其稳定性。 解:列出劳斯表,14,劳斯表中第一列元素符号的变化两

6、次, 说明特征方程有两个正实部的根,所以系统不 稳定。,15,(2)某一行元素全为零 在劳斯表中,如果出现某一行元素全为零,说明特征方程存在大小相等符号相反的实根和(或)共轭虚根,或者共轭复根。此时,可用全零行上面一行的元素构造一个辅助方程,利用辅助方程对s的求导后得到的方程系数代替全零行的元素,然后再按通常的规则完成劳斯表中其余各项元素的计算。辅助方程的次数总是偶数,所有那些数值相同符号相异的根都可由辅助方程求得。,16,例 系统特征方程为:试用劳斯判据判别其稳定性。 解:列出劳斯表 劳斯表中 行元素全为零,这时可用全零行上面一 行( 行)的元素构造一个辅助方程:将辅助方程A(s)对变量 s

7、 求导,得 新方程,并用 新方程的系数代替全零行的元素。,17,求解辅助方程A(s)=0得到 说明此特征方程有一对共轭根分布在虚轴上系统处于临界稳定状态。3劳斯判据的应用 劳斯判据主要用来判断系统是否稳定。问题:1。这种判据并不能指出如何使系统达到稳定。2。如果采用劳斯表判别出的系统是稳定的,它也不能表明系统一定具备满意的动态响应。即:劳斯判据不能表征特征方程在左半面的根相对于虚轴的距离。,18,例: 确定系统稳定的K、T值。解: 系统的特征方程为 列出劳斯表要使系统稳定,第一列元素的符号均应大于零 由此得:1。 即:2。,19,则稳定条件为:, 0 K ,20,例:设系统特征方程为:试判别系统的稳定性,并分析有几个根位于垂线与虚轴之间。 解:列出劳斯表 因劳斯表中第一列元素无符号变化,所以系统稳 定。 令:,21,原特征方程,经过整理,得到 特征方程:劳斯表中第一列元素符号变化一次,所以有一 个特征方程根在垂线 右边。即有一个根在阴影 区内。,22,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报