1、,引入,正态分布在统计学中是很重要的分布。我们知道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于0,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以通常感兴趣的是它落在某个区间的概率。离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数(曲线)描述。,频率分布 直方图,数 学 情 景,第一步:分组,确定组数,组距?,第二步:列出频率分布表,中间高,两头低,左右大致对称,第三步:作出频率分布直方图,若数据无限增多且组距无限缩小,那么频率分布直方图的顶边缩小乃至
2、形成一条光滑的曲线,我们称此曲线为概率密度曲线,概率密度曲线的形状特征,“中间高,两头低, 左右对称”,知识点一:正态密度曲线,上图中概率密度曲线具有“中间高,两头低”的特征,像这种类型的概率密度曲线,叫做“正态密度曲线”,它的函数表达式是,知识点二:正态分布与密度曲线,正态密度曲线的图像特征,=,知识点:正态分布,2.正态分布的定义:,如果对于任何实数 ab,随机变量X满足:,则称为X 的正态分布. 正态分布由参数、唯一确定.正态分布记作N( ,2).其图象称为正态曲线.,如果随机变量X服从正态分布, 则记作 X N( ,2),m 的意义,总体平均数反映总体随机变量的,平均水平,x3,x4,
3、x= ,总体平均数反映总体随机变量的,平均水平,总体标准差反映总体随机变量的,集中与分散的程度,s的意义,正态总体的函数表示式,当= 0,=1时,标准正态总体的函数表示式,3、正态曲线的性质,具有两头低、中间高、左右对称的基本特征,(1)曲线在x轴的上方,与x轴不相交.,(2)曲线是单峰的,它关于直线x=对称.,3、正态曲线的性质,(4)曲线与x轴之间的面积为1,(3)曲线在x=处达到峰值(最高点),方差相等、均数不等的正态分布图示,=0.5,= -1,=0,= 1,若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数;,均数相等、方差不等的正态分布图示,=1,=0,若 固定, 大时, 曲
4、线矮而胖; 小时, 曲线瘦而高, 故称 为形状参数。,(6)当一定时,曲线的形状由确定 . 越大,曲线越“矮胖”,表示总体的分布越分散; 越小,曲线越“瘦高”,表示总体的分布越集中.,(5)当 x时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.,3、正态曲线的性质,正态曲线下的面积规律,X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。,S(-,-X),S(X,)S(-,-X),正态曲线下的面积规律,对称区域面积相等。,S(-x1, -x2),-x1 -x2 x2 x1,S(x1,x2)=S(-x2,-x1),4、特殊区间的概率:,若XN ,则对于任何实数a0,概率为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。,特别地有,我们从上图看到,正态总体在 以外取值的概率只有4.6,在 以外取值的概率只有0.3 。,由于这些概率值很小(一般不超过5 ),通常称这些情况发生为小概率事件。,1、已知XN (0,1),则X在区间 内取值的概率等于( ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 2、设离散型随机变量XN(0,1),则 = ,= . 3、若XN(5,1),求P(6X7).,D,0.5,0.9544,