收藏 分享(赏)

2018年湖南省(长郡中学、株洲市第二中学)、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版).doc

上传人:cjc2202537 文档编号:925402 上传时间:2018-05-02 格式:DOC 页数:17 大小:1.09MB
下载 相关 举报
2018年湖南省(长郡中学、株洲市第二中学)、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版).doc_第1页
第1页 / 共17页
2018年湖南省(长郡中学、株洲市第二中学)、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版).doc_第2页
第2页 / 共17页
2018年湖南省(长郡中学、株洲市第二中学)、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版).doc_第3页
第3页 / 共17页
2018年湖南省(长郡中学、株洲市第二中学)、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版).doc_第4页
第4页 / 共17页
2018年湖南省(长郡中学、株洲市第二中学)、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版).doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、2018 届湖南省(长郡中学、株洲市第二中学) 、江西省(九江一中)等十四校高三第一次联考数学(理)试题(解析版)第卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数满足 ,则的共轭复数是( )A. B. C. D. 【答案】D【解析】因为 ,则的共耗复数是 .本题选择 D 选项.2. 已知全集为 ,集合 , ,则 ( )A. B. C. D. 【答案】B【解析】由题意可得: , ,则 ,.本题选择 B 选项.3. 袋中装有大小相同的四个球,四个球上分别标有数字“ ”“ ”“ ”“ ”,现从中随

2、机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A. B. C. D. 【答案】D【解析】从球“ ”“ ”“ ”“ ”中随机选取三个球有 种取法,能成等差数列的取法只有一种,为“0”“1”“2”,即概率为 .本题选择 D 选项.4. 若双曲线 的焦距为 ,则 等于( )A. 或 B. C. D. 【答案】A【解析】焦距为 ,则 c2=4,若焦点在 x 轴时,a 2=3-m0,b2=1-m0,则 c2=4-2m=4,解得 m=0;若然点在 y 轴时,a 2=m-10,b2=m-30,则 c2=2m-4=4,解得 m=4,综上可得: 等于 或本题选择 A 选项.5. 记 为等差数列

3、 的前 项和,若 , ,则 等于( )A. B. C. D. 【答案】B【解析】由题意可得: ,由等差数列的性质可得: ,该数列的公差: ,故 .本题选择 B 选项.6. 执行如图所示的程序框图,则其输出的结果是( )A. B. C. D. 【答案】A【解析】题中的流程图等价于如下问题:已知数列 的首项为 ,且满足递推关系: ,求 的值.则由递推关系可知: ,结合 可得:数列 是首项为 2,公比为 2 的等比数列,则: .本题选择 A 选项.7. 已知函数 为偶函数,当 时, ,且 为奇函数,则 ( )A. B. C. D. 【答案】C【解析】由函数 f(x)为偶函数,则 ,f(x+1)为奇函

4、数,则 ,据此有: ,即 ,据此得 f(x)是最小正周期为 4 的周期函数,则: .本题选择 C 选项.8. 已知一个棱长为 的正方体被两个平面所截得的几何体的三视图(单位: )如图所示,则该几何体的体积是( )A. B. C. D. 【答案】D【解析】由三视图得原几何体如图所示,在正方体 中,由平面 ,平面 截得的几何体,它的体积为一个正方体的体积减去两个底面为等腰直角三角形的三棱锥的体积,即 .本题选择 D 选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公

5、式得出,则常用等积法、分割法、补形法等方法进行求解9. 若 , , , ,则 , , 这三个数的大小关系正确的是( )A. B. C. D. 【答案】B【解析】由 0logbb=1,而 0abaaba1,据此有: .本题选择 B 选项.10. 函数 的部分图象如图所示,已知 , ,且,则 等于( )A. B. C. D. 【答案】C【解析】由题意可得 ,函数的周期满足: ,当 时, ,据此可得: ,令 可得 ,则 ,由 , ,且 ,可得: ,则 .本题选择 C 选项.11. 若对于函数 图象上任意一点处的切线 ,在函数 的图象上总存在一条切线 ,使得 ,则实数的取值范围为( )A. B. C.

6、 D. 【答案】D【解析】设切线 的斜率为 ,则 ,当且仅当 时等号成立.设切线 l2 的斜率为 k2,则 ,由于总存在 l2,使得 ,即总存在 k2,使得 ,故 ,显然 ,且 .则: ,即: ,解得: ,据此有: .即实数的取值范围为 .本题选择 D 选项.点睛:导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式由外向内逐层求导,其导数为两层导数之

7、积.12. 如图,已知椭圆 ,过抛物线 焦点 的直线交抛物线于 、 两点,连接 , 并延长分别交 于 、 两点,连接 , 与 的面积分别记为 , .则在下列命题中,正确命题的个数是( )若记直线 , 的斜率分别为 、 ,则 的大小是定值为 ; 的面积 是定值 ;线段 、 长度的平方和 是定值 ;设 ,则 .A. 个 B. 个 C. 个 D. 个【答案】A【解析】记 M、N 两点的坐标分别为 ,由抛物线焦点弦的性质可得 ,则 , .所以正确;又设 A、B 两点的坐标分别为 ,由 可得: ,据此有: ,所以 .这样, ,即成立;而 ,也正确;最后, ,故成立.综上所述,四个命题都是正确的,本题选择

8、 A 选项.点睛:1.圆锥曲线有关综合问题,常需分析图形的静与动,抓住变化的关键因素. 2.“目标先行”是一个永远的话题 3.数、形两方面恰当地表示图形的位置关系和数量关系.几何关系如何用代数形式转化,是解圆锥曲线问题的关键.第卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13. 已知向量 , ,若 ,则 _【答案】【解析】由题意可得: ,即: ,则: ,据此可知: .14. 已知为常数,且 ,则 的二项展开式中的常数项为_【答案】【解析】由题意可得: ,展开式的通项公式: ,展开式为常数项时: ,据此可得展开式中的常数项为 .15. 已知 , 满足约束条件

9、,则 的最大值是最小值的 倍,则 _【答案】【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点 处取得最大值,在点 处取得最小值,据此有: , ,结合题意有: ,求解关于实数 的方程可得: .点睛:简单的线性规划有很强的实用性,线性规划问题常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值由于约束条件中存在参数,所以可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的

10、某区域,从而确定参数的值.16. 已知数列 满足: , .设 是等差数列,数列 是各项均为正整数的递增数列,若 ,则 _【答案】【解析】由题意,递推关系 可化为 ,令 ,则有 ,而 ,则数列 是首项为 2,公比为 2 的等比数列,所以 ,即 ,依题意知, 成等差数列,即 ,结合通项公式有: ,结合 可得: ,分类讨论:当 均为奇数时,整理计算可得 ,左边为偶数,故矛盾;当 均为偶数时,整理计算可得 ,左边为偶数,故矛盾;当 为偶数, 为奇数时,整理计算可得 ,左边为偶数,因为数列 是各项均为正整数的递增数列,所以 ,所以 ,故矛盾;当 为奇数, 为偶数时,整理计算可得 ,即 .综上可得 .三、

11、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17. 设函数 .()求函数 的递增区间;()在 中, , ,分别为内角 , , 的对边,若 , ,且 ,求的面积.【答案】() ;() .【解析】试题分析:()函数的解析式可化为: .结合正弦函数的性质可得 的递增区间为 .()由 ,结合()的结论可得 ,由 ,结合正弦定理得 ,所以 ,由余弦定理可得 . 的面积 .试题解析:()函数的解析式可化为:.由 ,得函数 的递增区间为 .()因为 ,即 ,所以 ,因为 是三角形的内角,所以 ,又因为 ,由正弦定理得 ,所以 ,所以 ,因为 , ,由余弦定理得 .

12、所以, ,故 的面积为 .18. 某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前 天参加抽奖活动的人数进行统计, 表示第 天参加抽奖活动的人数,得到统计表格如下:1 2 3 4 5 6 75 8 8 10 14 15 17()经过进一步统计分析,发现 与 具有线性相关关系 .请根据上表提供的数据,用最小二乘法求出 关于 的线性回归方程 ;()该商店规定:若抽中“一等奖” ,可领取 元购物券;抽中“二等奖”可领取 元购物券;抽中“谢谢惠顾” ,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为 ,获得“二等奖”的概率为 .现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额 的分布列及数学期望.参考公式: , , .【答案】() ;() 答案见解析.【解析】试题分析:()由题意可得 , ,则 , , 关于 的线性回归方程为 .()由题意可知二人所获购物券总金额 的可能取值有 、 、 、 、 元,它们所对应的概率分别为:, , , .据此可得分布列,计算相应的数学期望为元.试题解析:()依题意: , , ,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高等教育 > 教育学

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报