1、EEsof,Cheng-cheng,XieFeb,16,2006Page 1“%4 !9 qbv EEsofCheng-cheng, Xie Application EngineerEEsof,Cheng-cheng,XieFeb,16,2006Page 21 = PA1SDCs y s !9 !9 Layout PI4DQPSK / k ACPREEsof,Cheng-cheng,XieFeb,16,2006Page 3PA1S T “ K q qPsat1dB qP-1) 9ma9m r q qr q qFr q L “ IM3 “ IM5=Qa QoACPR AltCPR Alterna
2、te CPR) o1 q q q =addEEsof,Cheng-cheng,XieFeb,16,2006Page 4S L q : 50 W47dBm q : 1 W r q () 50% =Qo 40dBC : 28 V bv : MRF9045MEEsof,Cheng-cheng,XieFeb,16,2006Page 5DC_FET Curve Tracer FSL_TECH_INCLUDEFTIFSL_TECH_INCLUDEI_ProbeIDSVARVAR1VGS =0 VVDS =0 VEqnVarV_DCSRC2Vdc=VGSDCDC1Step=0.1Stop=28*2Start
3、=0SweepVar=“VDS“DCDisplayTemplatedisptemp1“FET_curve_tracer“TempDispVJFSL_MRF_MET_MODELMRF1MODEL=MRF9045MV_DCSRC1Vdc=VDSParamSweepSweep1Step=0.1Stop=5.0Start=2.5SimInstanceName6=SimInstanceName5=SimInstanceName4=SimInstanceName3=SimInstanceName2=SimInstanceName1=“DC1“SweepVar=“VGS“PARAMETER SWEEP!1
4、VgaVd SEEsof,Cheng-cheng,XieFeb,16,2006Page 6DC_5 10152025303540455055060123405VDSIDS.i,AVDsatIQm3Load_LineVDsatVDS=IDS.i=0.562VGS=3.8000000.600IQVDS=IDS.i=0.717VGS=3.80000028.000m3VDS=IDS.i=0.055VGS=3.10000033.000EqnVsat=indep(VDsat)EqnVq=indep(IQ)EqnVmax=indep(m3)EqnImin=m3EqnIq=IQEqnLoad_Line=(Vm
5、ax-VDS)/RL+IminEqnPq=Iq*VqPq20.089RL7.508EqnRL=0.5*(Vq-Vsat)*2)/PoutEqnPout=50V wL V ANbv T AB bEEsof,Cheng-cheng,XieFeb,16,2006Page 7 DC_TF a bv VG VJVDPortP1Num=1PortP2Num=2sl_tok_LL2012-F_J_19960828L2PART_NUM= LL2012-F82NJ 82 nHsc_mrt_MC_GRM40C0G050_J_19960828C8PART_NUM=GRM40C0G330J050 33pFsc_mrt
6、_MC_GRM40C0G050_J_19960828C7PART_NUM= GRM40C0G330J050 33pFPortP4Num=4sc_spr_293D_A025_X9_19960828C24PART_NUM= 293D474X9025A2 0.47uFsc_mrt_MC_GRM40C0G050_D_19960828C23PART_NUM=GRM40C0G100D050 10pFMLINTL22L= 100 milW=63.668898 milSubst= “MSub1“ MLINTL23L=100 milW= 63.668898 milSubst=“MSub1“sc_spr_293D
7、_A025_X9_19960828C19PART_NUM= 293D474X9025A2 0.47uFsc_mrt_MC_GRM40C0G050_D_19960828C20PART_NUM= GRM40C0G100D050 10pFMLINTL21L= 100 milW=63.668898 milSubst=“MSub1“ MLINTL20L=100 milW= 63.668898 milSubst=“MSub1“ PortP3Num=3sc_mrt_MC_GRM40C0G050_J_19960828C25PART_NUM= GRM40C0G330J050 33pFsc_mrt_MC_GRM4
8、0C0G050_J_19960828C17PART_NUM= GRM40C0G330J050 33pFFSL_MRF_MET_MODELMRF1CTH=-1RTH=-1TSNK=25MODEL= MRF9045MMSUBMSub1Rough=0 milTanD=0.002 T=2.8 milHu=3.9e+034 milCond=5.8E+08 Mur=1 Er=4.2 H=33.6 milMS u bsr_avx_CR_10_K_19960828R13PART_NUM=CR10-150K 15 Ohmsc_mrt_MC_GRM40C0G050_J_19960828C3PART_NUM=GRM
9、40C0G330J050 33pF sr_avx_CR_10_K_19960828R12PART_NUM= CR10-680K 68 OhmMLINTL1L= 2194.444882 milW=63.670079 milSubst= “MSub1“ MRF9045M_AMPX4EEsof,Cheng-cheng,XieFeb,16,2006Page 8 kVGGVDDVDDVGGMRF9045M_AMPX1S_ParamSP2Step=1.0 MHzStop=3000 MHzStart=1 MHzS-PARAMETERSI_ProbeIDDI_ProbeIGGV_DCSRC2Vdc=VGSV_
10、DCSRC1Vdc=VDSVARVAR3VGS =3.8 VVDS =28 VEqnVarFSL_TECH_INCLUDEFTIFSL_TECH_INCLUDEMuPrimeMuPrime1MuPrime1=mu_prime(S)MuPrimeMuMu1Mu1=mu(S)MuStabMeasStabMeas1StabMeas1=stab_meas(S)StabMeasStabFactStabFact1StabFact1=stab_fact(S)StabFactP_1TonePORT1Freq=f ssP=polar(dbmtow (-60),0)Z=50 OhmNum=1TermR3Z=50
11、OhmNum=2F f |BF VEEsof,Cheng-cheng,XieFeb,16,2006Page 9 0.5 1.0 1.5 2.0 2.50.0 3.00.51.01.50.02.0freq, GHzStabMeas1m2freq=Mu1=1.00032.00MHz0.5 1.0 1.5 2.0 2.50.0 3.012304freq, GHzMu1m2m3freq=MuPrime1=0.99650.00MHz0.5 1.0 1.5 2.0 2.50.0 3.01.001.051.101.151.200.951.25freq, GHzMuPrime1m30.5 1.0 1.5 2.
12、0 2.50.0 3.0123405freq, GHzStabFact1EEsof,Cheng-cheng,XieFeb,16,2006Page 10E F 1 p o o1 4 q 9Fbv r q dLEEsof,Cheng-cheng,XieFeb,16,2006Page 11LoadPull SetupvloadVs_lowVs_highRefer to the PowerPoint (TM) presentation“LoadPullPres.ppt“ within this example project directory for a detailed explanationof
13、 these load pull simulation setups.Specif y desired Fundamental Load Tuner cov erage: s11_rho is the radius of the circle of ref lection coef f icients simulated. Howev er, the radius of the circle will be reduced if it would otherwise go outside the Smith chart. If y ou want to ov erride this and a
14、llow ref lection coef f icients outside the Smith chart, edit the SweepEquations VAR block, and set max_rho=mag(s11_rho)s11_center is the center of the circle of simulated ref lection coef f icientspts is total number of ref lection coef f icients simulatedZ0 is the sy stem ref erence impedance Set
15、these v alues:Set Load and Source impedances atharmonic frequenciesOne Tone Load Pull Simulation; output power and PAE f ound at each f undamental load impedanceVARVAR2Z_s_5 =Z0 + j*0Z_s_4 = Z0 + j*0Z_s_3 = Z0 + j*0Z_s_2 = Z0 + j*0Z_s_fund = 10 + j*0Z_l_5 = Z0 + j*0Z_l_4 = Z0 + j*0Z_l_3 = Z0 + j*0Z_
16、l_2 =Z0 + j*0EqnVarADS_MOSADSMOS1N=8*cellsWtot=(704e-6)*cellsModel=adsmosADS_MOS_ModeladsmosFile=“motorola_mosfet_h“HarmonicBalanceHB1Order1=9Freq1=RFfreqHARMONIC BALANCEI_ProbeIloadCC2C=1.0 uFCC1C=1.0 uFI_ProbeIs_highI_ProbeIs_lowLL1R=L=1 uHLL2R=L=1 uHS1P_EqnS1Z1=Z0S1,1=LoadTunerP_1TonePORT1Freq=RF
17、freqP=dbmtow(Pavs)Z=Z_sNum=1V_DCSRC2Vdc=VlowV_DCSRC1Vdc=VhighVARglobal ImpedanceEquationsEqnVarParamSweepSweep2PARAMETER SWEEPVARSweepEquationsZ0=50pts=100s11_center =-0.6 +j*0.2s11_rho =0.75EqnVarVARVAR1cells=28EqnVarVARSTIMULUSVlow=2Vhigh=5.8RFfreq=850 MHzPavs=10 _dBmEqnVar DesignGuide/LoadPull/On
18、e Tone LoadPull Simulationi9bv EEsof,Cheng-cheng,XieFeb,16,2006Page 128 PAEaPdel |KD E Fm3real_indexs11=surf ace_samples=0.914 / 171.215imag_indexs11=0.139568impedance = Z0 * (0.045 + j0.077)-0.903real_indexs11 (-0.990 to -0.210)surface_samplesm3-0.90350.48PAE, %2.264 + j3.833 Impedance at marker m3
19、44.44Power Delivered (dBm) Move Marker m3 to select impedance value and corresponding PAE and delivered power values.Simulated Load Reflection CoefficientsEEsof,Cheng-cheng,XieFeb,16,2006Page 13 SmithChart E F 2.3-j*3.8EEsof,Cheng-cheng,XieFeb,16,2006Page 14 E F S_ParamSP1Step=0.025 GHzStop=3.0 GHzS
20、tart=0.11 GHzS-PARAMETERSTermTerm1Z=50 OhmNum=1DA_SmithChartMatch1_output_match_designDA_SmithChartMatch1Z0=50 OhmZl=(2.300-j*3.900) OhmZs=50 OhmF=760 MHzTermTerm2Z=2.3-j*3.8Num=2Por tP2Num=2Por tP1Num=1CC3C=27.689016 pFCC2C=2.307137 pFTLINTL3F=760 MHzE=25.92Z=22.85 OhmTLINTL2F=760 MHzE=32.25Z=50 Oh
21、mTLINTL1F=760 MHzE=8.891Z=50 OhmCC1C=12.975203 pFEEsof,Cheng-cheng,XieFeb,16,2006Page 15E F _Tfreq (110.0MHz to 3.000GHz)S(1,1)S(2,2)m1m1freq=S(2,2)=0.013 / 136.415impedance = 49.071 + j0.869760.0MHz0.5 1.0 1.5 2.0 2.50.0 3.0-30-20-10-400freq, GHzdB(S(2,1)Vn 760MHz HXE F zEEsof,Cheng-cheng,XieFeb,16
22、,2006Page 16 E F f / SourcePullm3real_indexs11=surf ace_samples=0.964 / 174.044imag_indexs11=0.100000impedance = Z0 * (0.018 + j0.052)-0.959real_indexs11 (-0.993 to -0.507)surface_samplesm3-0.95951.43PAE, %0.924 + j2.600 Impedance at marker m346.07Power Delivered (dBm) Move Marker m3 to select imped
23、ance value and corresponding PAE and delivered power values.Simulated Source ImpedancesEEsof,Cheng-cheng,XieFeb,16,2006Page 17| 9 LMSUBMSub1Rough=0 milTanD=0.002 T=2.8 milHu=3.9e+034 milCond=5.8E+08 Mur=1 Er=4.2 H=33.6 milMSubsc_mrt_MC_GRM40C0G050_D_19960828C24PART_NUM=GRM40C0G090D050 9pFPortP1Num=1
24、MLINTL16L=205.546063 milW=63.670079 milSubst=“MSub1“ PortP2Num=2MLINTL17L=414.385827 milW=199.971654 milSubst=“MSub1“ MLINTL18L=802.433071 milW=63.670079 milSubst=“MSub1“ sc_mrt_MC_GRM40C0G050_C_19960828C25PART_NUM=GRM40C0G020C050 2pFsc_mrt_MC_GRM40C0G050_J_19960828C26PART_NUM=GRM40C0G220J050 22pFTL
25、INTL3F=760 MHzE=18.00Z=22.85 OhmCC3C=42.80523 pFTLINTL2F=760 MHzE=32.91Z=50 OhmCC2C=2.047247 pFTLINTL1F=760 MHzE=8.430Z=50 OhmCC20C=12.117875 pFTLINTL11F=760 MHzE=32.91Z=50 OhmTLINTL10F=760 MHzE=18.00Z=22.85 Ohmsc_mrt_MC_GRM40C0G050_J_19960828C21PART_NUM=GRM40C0G220J050 22pFsc_mrt_MC_GRM40C0G050_C_1
26、9960828C22PART_NUM=GRM40C0G020C050 2pFsc_mrt_MC_GRM40C0G050_D_19960828C23PART_NUM=GRM40C0G090D050 9pFTLINTL12F=760 MHzE=8.430Z=50 OhmEEsof,Cheng-cheng,XieFeb,16,2006Page 18 qVinVloadinput_matchX5MRF9045M_AMPX4output_matchX3V_DCSRC1Vdc=VDSI_ProbeIloadRR1R=50 OhmVARVAR1Pin=30VGS =3.8 VVDS =28 VEqnVarV
27、ARVAR2fo=760.0 MHzEqnVarFSL_TECH_INCLUDEFTIFSL_TECH_INCLUDEHarmonicBalanceHB1Step=1Stop=40Start=-30SweepVar=“Pin“Order1=15Freq1=foHARMONIC BALANCEP_1TonePORT1Vdc=Freq=foP=dbmtow(Pin)Z=50.0 OhmNum=1I_ProbeIinV_DCSRC2Vdc=VGSEEsof,Cheng-cheng,XieFeb,16,2006Page 19 q wLEqn Pdel_Watts=real(0.5*Vload1*con
28、j(Iload.i1)Eqn Pdel_dBm = 10*log10(Pdel_Watts)+30-20 -10 0 10 20 30-30 4002040-2060PinPdel_dBmOutput OutputPin=Pdel_dBm=45.57030.000 qrS1 pEEsof,Cheng-cheng,XieFeb,16,2006Page 209m wLEqn Gp=Pdel_dBm-Pin-20-100 102030-30 40810121416618PinGpLinearGainm3LinearGainPin=Gp=17.341-10.000m3Pin=Gp=15.57030.0
29、00EEsof,Cheng-cheng,XieFeb,16,2006Page 21 qFr q wL-20-10 0 102030-30 401020304050060PinPAEm1m1Pin=PAE=49.61830.000Eqn Pavs_Watts=10*(Pin-30)/10)Eqn PAE=100*(Pdel_Watts-Pavs_Watts)/PdcEEsof,Cheng-cheng,XieFeb,16,2006Page 22a wL0-100100ts(Vload),V0.5 1.0 1.5 2.0 2.50.0 3.00-22time, nsects(Iload.i), AV
30、4B EEsof,Cheng-cheng,XieFeb,16,2006Page 23=Qo246810012-500-10050freq, GHzdBm(VloadPin_idx,:)FundP2Fundfreq=dBm(VloadPin_idx,:)=45.570760.0MHzP2freq=dBm(VloadPin_idx,:)=-7.0321.520GHzEqn Pin_idx=find_index(Pin,m4)-20 -10 0 10 20 30-30 4040.000000PinPinm4m4indep(m4)=plot_vs(Pin, Pin)=30.00030.000EEsof
31、,Cheng-cheng,XieFeb,16,2006Page 24 sc_m r t _M C_G RM 40C0G 050_J_19960828C1 8PART_NUM =G RM 40C0G 220J050 22pFM RF9045_ar tQ1sc_m r t _M C_G RM 40C0G 050_J_19960828C1 7PART_NUM =G RM 40C0G 330J050 33pFPor tP2Num =2Por tP1Nu m =1sr _avx_CR_10_K_19960828R1 3PART_NUM =CR10- 150K 15 O hmsc_m r t _M C_G
32、 RM 40C0G 050_J_19960828C3PART_NUM =G RM 40C0G 330J050 33pF sr _avx_CR_10_K_19960828R1 2PART_NUM =CR10- 150K 15 O hmM TAPERTaper 1L=100. 0 m ilW2=63. 670079 m ilW1=199. 971654 m ilSubst =“ M Sub1“M TAPERTaper 2L=100. 0 m ilW2=63. 670079 m ilW1=199. 971654 m ilSubst =“ M Sub1“sc_m r t _M C_G RM 40C0G
33、 050_D_19960828C26PART_NUM =G RM 40C0G 090D050 9pFsc_m r t _M C_G RM 40C0G 050_J_19960828C24PART_NUM =G RM 40C0G 150J050 15pFsc_m r t _M C_G RM 40C0G 050_C_19960828C2 8PART_NUM =G RM 40C0G 020C050 2pFsc_m r t _M C_G RM 40C0G 050_D_19960828C2 7PART_NUM =G RM 40C0G 090D050 9pFMLINTL30L=814. 898 m il o
34、pt 250 m il t o 1000 m il W=63. 670079 m ilSubst =“ M Sub1“MLINTL8L=622. 343 m il opt 100 m il t o 750 m il W=63. 670079 m ilSubst =“ M Sub1“MLINTL15L=247. 144 m il opt 50 m il t o 500 m il W=63. 670079 m ilSub s t =“ M Sub1 “MLINTL32L=184. 709 m il opt 100 m il t o 500 m il W=63. 670079 m ilSu bs t
35、 =“ M Sub 1“MLINTL31L=202. 643 m il opt 75 m il t o 750 m il W=199. 971654 m ilSubst =“ M Sub1“MLINTL7L=320. 449 m il opt 75 m il t o 500 m il W=199. 971654 m ilSubst =“ M Sub1“MLINTL9L=248. 635 m il opt 75 m il t o 500 m il W=63. 670079 m ilSubst =“ M Sub1“MLINTL10L=244. 711 m il opt 50 m il t o 50
36、0 m il W=63. 670079 m ilSubst =“ M Sub1“M TEE_ADSTee1W3=63. 668898 m ilW2=199. 971654 m ilW1=199. 971654 m ilSubst =“ M Sub1“M TEE_ADSTee2W3=63. 670079 m ilW2=199. 971654 m ilW1=199. 971654 m ilSubst =“ M Sub1“MSUBMSub1Rough=0 m ilTanD=0. 002 T=2. 8 m ilHu=3. 9e+034 m ilCond=5. 8E+08 Mur=1 Er =4. 2
37、H=33. 6 m ilMSubSM T_ PadPad2PO =0 m ilSM _Layer =“ solder _m ask“SM O =5. 0 m ilPadLayer =“ cond“L=40. 0 m ilW=70.0 milSM T_ PadSM T_PadPad1PO =0 m ilSM _Layer =“ solder _m ask“SM O =5. 0 m ilPadLayer =“ cond“L=40. 0 m ilW=50. 0 m ilSM T_PadSM T_PadPad3PO =0 m ilSM _Layer =“ solder _m ask“SM O =5.
38、0 m ilPadLayer =“ cond“L=30. 0 m ilW=30. 0 m ilSM T_PadMLINTL39L=551. 591 m il opt 250 m il t o 3500 m il W=63. 670079 m ilSubst =“ M Sub1“sc_m r t _M C_G RM 40C0G 050_C_19960828C2 5PART_NUM =G RM 40C0G 020C050 2pFMLINTL41L=253. 4234 m ilW=63. 6689 m ilSubs t =“ M SUB1“M CURVE2Cu r v e 2Nm ode=2Radi
39、us=100. 0 m ilAngle=90W=63. 668898 m ilSubst =“ M Sub1“sc_m r t _M C_G RM 40C0G 050_D_19960828C20PART_NUM =G RM 40C0G 100D050 10pFMLINTL42L=440 m ilW=63. 668898 m ilSubst =“ M Sub1“sc_spr _293D_A025_X9_19960828C1 9PART_NUM =293D474X9025A2 0. 47uFPor tP3Nu m =3MLINTL20L=225 m ilW=63. 668898 m ilSubst
40、 =“ M Sub1“MLINTL21L=200 m ilW=63. 668898 m ilSubst =“ M Sub1“sl_t ok_LL2012- F_J_19960828L2PART_NUM =LL2012- F82NJ 82 nHMLINTL43L=90 m ilW=40 m ilSub s t =“ M SUB1 “MLINTL22L=200 m ilW=63. 668898 m ilSubst =“ M Sub1“MLINTL23L=350 m ilW=63. 668898 m ilSubst =“ M Sub1“Po r tP4Nu m =4MLINTL40L=200 m i
41、lW=63. 668898 m ilSubst =“ M Sub1“sc_spr _293D_A025_X9_19960828C2 3PART_NUM =293D474X9025A2 0. 47uFsc_m r t _M C_G RM 40C0G 050_D_19960828C2 2PART_NUM =G RM 40C0G 100D050 10pFM CURVE2Cu r v e 1Nm ode=2Radius=100. 0 m ilAngle=90W=63. 668898 m ilSubst =“ M Sub1“sc_m r t _M C_G RM 40C0G 050_J_19960828C
42、2 1PART_NUM =G RM 40C0G 330J050 33pFMLINTL1L=100 m ilW=63. 668898 m ilSub s t =“ M SUB1 “MLINTL44L=315. 0248 m ilW=63. 668898 m ilSub s t =“ M SUB1 “hl. L F MTaperMTAPERTaper1L=100.0 milW2=63.670079 milW1=199.971654 milSubst=“MSub1“EEsof,Cheng-cheng,XieFeb,16,2006Page 25 !GoalGoal2RangeMax1=RangeMin
43、1=RangeVar1=Weight=Max=-40Min=SimInstanceName=“HB1“Expr=“dBm(Vload2)-dBm(Vload1)“GOALGoalGoal1RangeMax1=RangeMin1=RangeVar1=Weight=Max=Min=47.0SimInstanceName=“HB1“Expr=“dBm(Vload1)“GOALOptimOptim1SaveCurrentEF=noUseAllGoals=yesUseAllOptVars=yesSaveAllIterations=noSaveNominal=noUpdateDataset=yesSave
44、OptimVars=noSaveGoals=yesSaveSolns=yesSetBestValues=yesNormalizeGoals=noFinalAnalysis=“None“DesiredError=0.0MaxIters=25OptimType=GradientOPTIMEEsof,Cheng-cheng,XieFeb,16,2006Page 26M ! m LM MLINTL15L=247.144 mil opt 50 mil to 500 mil W=63.670079 milSubst=“MSub1“EEsof,Cheng-cheng,XieFeb,16,2006Page 2
45、74TEqnCF=39.36*1000Initial and optimal transmission line lengths, in meters:Optimal transmission line lengths, in mils:Multiply ing a length in meters, by conv ersion f actorCF converts the length to mils.optIter010.TIM.TL10.L0.0060.006.TIM.TL15.L0.0060.006.TIM.TL30.L0.0200.021.TIM.TL31.L0.0110.005.
46、TIM.TL32.L0.0050.005.TIM.TL39.L0.0560.014OPTIM.TL7.L0.0070.008OPTIM.TL8.L0.0110.016OPTIM.TL9.L0.0060.006optIter010TL10.L*CF249.936245.735TL15.L*CF249.936247.240TL30.L*CF802.228814.096TL31.L*CF414.280194.706TL32.L*CF205.493188.914TL39.L*CF2193.883558.172.M.TL7.L*CF287.426323.893.M.TL8.L*CF424.891611.
47、258.M.TL9.L*CF216.731245.156InitialEF67.187FinalEF0.000optIter10Goal147.003Goal2-40.017EEsof,Cheng-cheng,XieFeb,16,2006Page 28 q wL-20 -10 0 10 20 30-30 4002040-2060PinPdel_dBmm1m1Pin=Pdel_dBm=47.00330.000EEsof,Cheng-cheng,XieFeb,16,2006Page 299m wL-20 -10 0 10 20 30-30 40-8-6-4-2-100PinGp-Gp0m4m4Pi