1、六年级数学第三单元知识点总结:分数除法一、分数除法1、分数除法的意义:乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题(求 单位“1”的量(用除法): 已知单位“1”的几分之
2、几是多少,求单位“1”的量。)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为 X,用方程解答。(2)算术(用除法): 分率对应量对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位“1”的量 或: 求多几分之几:大数小数 1 求少几分之几: 1 小数大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫
3、做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15 : 10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表示) 前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、 比和除法、分数的联系:比 前 项 比号“:” 后 项 比值除 法
4、被除数 除号“” 除 数 商分 数 分 子 分数线“” 分 母 分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、最简整数比(最简比):比的前项和后项都是整数,并且
5、是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4.化简比:(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 1510 = 1510 = 3/2 = 325.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。如: 已知两个量之比为,则设这两个量分别为。路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)注意:两个正方形的的面积之比,等于这两个正方形的边长之比的平方。(如:两个正方形的边长之比是 3:2,它们的面积比则是 9:4)两个平行四边形的面积之比,等于这两个平行四边形的底和高之比的乘积。(如:两个平行四边形的底之比为 3:2,高之比为 7:5,则它们的面积比是 21:10)两个面积相等的平行四边形,它们的高之比和底之比成反比。(如:两个面积相等的平行四边形,它们的高之比为3:2,相对应的两个底长之比应为2:3。 )