1、电子线路与电磁兼容设计 (完整版)2009 年 09 月 24 日 19:04 康佳集团研究所所长 作者:陶显芳 高级工程师 用户评论(0) 关键字: 电磁兼容(98) 电子线路(23)电子线路与电磁兼容设计 (完整版)现代的电子产品,功能越来越强大,电子线路也越来越复杂,以前在电子线路设计中很少出现的电磁干扰(EMI)和电磁兼容性(EMC)问题,现在反而变成了主要问题,电路设计对设计师的技术水平要求也越来越高。CAD(计算机辅助设计)在电子线路设计方面的应用,很大程度地拓宽了电路设计师的工作能力,但电磁兼容设计,尽管目前采用了世界上最先进的 CAD 技术,还是很难帮得上忙。电磁兼容设计实际上
2、就是针对电子产品中产生的电磁干扰(Electromagnetic Interference)进行优化设计,使之能成为符合各国或地区电磁兼容性EMC(Electromagnetic Compatibility)标准的产品。EMC 的定义是:在同一电磁环境中,设备能够不因为其它设备的干扰影响正常工作,同时也不对其它设备产生影响工作的干扰。电磁干扰(Electromagnetic Interference)一般都分为两种,传导干扰和辐射干扰。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。因此对 EMC 问题的研究
3、就是对干扰源、耦合途径、敏感设备三者之间关系的研究。自从电子系统降噪技术在 70 年代中期出现以来,主要由于美国联邦通讯委员会在 1990 年和欧盟在 1992 提出了对商业数码产品的有关规章,这些规章要求各个公司确保它们的产品符合严格的磁化系数和发射准则。符合这些规章的产品称为具有电磁兼容性 EMC(Electromagnetic Compatibility)。目前全球各地区基本都设置了 EMC 相应的市场准入认证,用以保护本地区的电磁环境和本土产品的竞争优势。如:北美的 FCC、NEBC 认证、欧盟的 CE 认证、日本的 VCCEI 认证、澳洲的 C-tick 人证、台湾的 BSMI 认证
4、、中国的 3C 认证等都是进入这些市场的“通行证”。很多人从事电子线路设计的时候,都是从认识电子元器件开始,但从事电磁兼容设计的时候却无从下手。实际上从事电磁兼容设计是从电磁场理论开始,即从电磁感应认识开始。一、电磁感应与电磁干扰一般电子线路都是由电阻器、电容器、电感器、变压器、有源器件和导线组成,当电路中有电压存在的时候,在所有带电的元器件周围都会产生电场,当电路中有电流流过的时候,在所有载流体的周围都存在磁场。电容器是电场最集中的元件,流过电容器的电流是位移电流,这个位移电流是由于电容器的两个极板带电,并在两个极板之间产生电场,通过电场感应,两个极板会产生充放电,形成位移电流。实际上电容器
5、回路中的电流并没有真正流过电容器,而只是对电容器进行充放电。当电容器的两个极板张开时,我们就可以把两个极板看成是一组电场辐射天线,此时在两个极板之间的电路都会对极板之间的电场产生感应。在两极板之间的电路不管是闭合回路,或者是开路,在与电场方向一致的导体中都会产生位移电流(当电场的方向不断改变时),即电流一会儿向前跑,一会儿向后跑。电场强度的定义是电位梯度,即两点之间的电位差与距离之比。一根数米长的导线,当其流过数安培的电流时,其两端电压最多也只有零点几伏,即几十毫伏/米的电场强度,就可以在导体内产生数安培的电流,可见电场作用效力之大,其干扰能力之强。电感器和变压器是磁场最集中的元件,流过变压器
6、次级线圈的电流是感应电流,这个感应电流是因为变压器初级线圈中有电流流过时,产生磁感应而产生的。在电感器和变压器周边的电路,都可看成是一个“变压器”的感应线圈,当电感器和变压器漏感产生的磁力线穿过某个电路时,此电路作为“变压器”的“次级线圈”就会产生感应电流。两个相邻回路的电路,也同样可以把其中的一个回路看成是“变压器”的“初级线圈”,而另一个回路可以看成是“变压器”的“次级线圈”,因此两个相邻回路同样产生电磁感应,即互相产生干扰。在电子线路中只要有电场或磁场存在,就会产生电磁干扰(Electromagnetic Interference),两者是相辅相成的,因为电场会产生位移电流,电流又会产生
7、磁场。在高速 PCB 及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。二、电磁兼容设计 目前大多数电子产品都选用开关电源供电,以节省能源和提高工作效率;同时越来越多的产品也都含有数字电路,以提供更多的应用功能。开关电源电路和数字电路中的时钟电路是目前电子产品中最主要的电磁干扰源,它们是电磁兼容设计的主要内容。下面我们以一个开关电源的电磁兼容设计过程来进行分析。图 1 是一个普遍应用的反激式(或称为回扫式)开关电源工作原理图,50Hz 或60Hz 交流电网电压首先经整流堆整流,并向储能滤波电容器
8、C5 充电,然后向变压器 T1 与开关管 V1 组成的负载回路供电。图 2 是进行过电磁兼容设计后的电原理图。1、对电流谐波的抑制一般电容器 C5 的容量很大,其两端电压纹波很小,大约只有输入电压的 10%左右,而仅当输入电压 Ui 大于电容器 C5 两端电压的时候,整流二极管才导通,因此在输入电压的一个周期内,整流二极管的导通时间很短,即导通角很小。这样整流电路中将出现脉冲尖峰电流,如图 3 所示。这种脉冲尖峰电流如用付立叶级数展开,将被看成由非常多的高次谐波电流组成,这些谐波电流将会降低电源设备的使用效率,即功率因数很低,并会倒灌到电网,对电网产生污染,严重时还会引起电网频率的波动,即交流
9、电源闪烁。脉冲电流谐波和交流电源闪烁测试标准为:IEC61000-3-2 及 IEC61000-3-3。一般测试脉冲电流谐波的上限是 40 次谐波频率。解决整流电路中出现脉冲尖峰电流过大的方法是在整流电路中串联一个PFC(Power Factor corrector)功率因素矫正电路,或差模滤波电感器。PFC 功率因素矫正电路一般为一个并联式升压开关电源,其输出电压一般为 DC400V,没有经功率因素矫正之前的电源设备,其功率因数一般只有 0.40.6,经功率因素矫正后功率因数最高可达到 0.98。功率因素矫正电路虽然可以完全解决整流电路中出现脉冲尖峰电流过大的问题,但又会带来新的高频干扰问题
10、,这同样也要进行严格的 EMC 电磁兼容设计。用差模滤波电感器可以有效地抑制脉冲电流的峰值,从而降低电流谐波干扰,但不能提高功率因素。图 2 中的 L1 为差模滤波电感器,差模滤波电感器一般用矽钢片材料制作,以提高电感量,为了防止大电流流过差模滤波电感器时产生磁饱和,一般差模滤波电感器的两个组线圈都各自留有一个漏感磁回路。L1 差模滤波电感可根据试验求得,也可以根据下式进行计算: E=L(di/di) (1)式中 E 为输入电压 Ui 与电容器 C5 两端电压的差值,即 L1 两端的电压降,L 为电感量,di/dt 为电流上升率。显然要求电流上升率越小,则要求电感量就越大。2、对振铃电压的抑制
11、 由于变压器的初级有漏感,当电源开关管 V1 由饱和导通到截止关断时会产生反电动势,反电动势又会对变压器初级线圈的分布电容进行充放电,从而产生阻尼振荡,即产生振铃,如图 4 所示。变压器初级漏感产生反电动势的电压幅度一般都很高,其能量也很大,如不采取保护措施,反电动势一般都会把电源开关管击穿,同时反电动势产生的阻尼振荡还会产生很强的电磁辐射,不但对机器本身造成严重干扰,对机器周边环境也会产生严重的电磁干扰。图 2 中的 D1、R2、C6 是抑制反电动势和振铃电压幅度的有效电路,当变压器初级漏感产生反电动势时,反电动势通过二极管 D1 对电容器 C6 进行充电,相当于电容器把反电动势的能量吸收掉
12、,从而降低了反电动势和振铃电压的幅度。电容器 C6 充满电后,又会通过 R2 放电,正确选择 RC 放电的时间常数,使电容器在下次充电时的剩余电压刚好等于方波电压的幅度,此时电源的工作效率最高。3、对传导干扰信号的抑制图 1 中,当电源开关管 V1 导通或者关断时,在电容器 C5、变压器 T1 的初级和电源开关管 V1 组成的电路中会产生脉动直流 i1,如果把此电流回路看成是一个“变压器”的“初级线圈”,由于电流 i1 的变化速率很高,它在“初级线圈”中产生的电磁感应,也会对周围电路产生电磁感应,我们可以把周围电路都看成是同一“变压器”的多个“次级线圈”,同时变压器 T1 的漏感也同样对各个“
13、次级线圈”产生感应作用,因此电流 i1 通过电磁感应,在每个“次级线圈”中都会产生的感应电流,我们分别把它们记为 i2、i3、i4 。其中 i2 和 i3 是差模干扰信号,它们可以通过两根电源线传导到电网的其它线路之中和干扰其它电子设备;i4 是共模干扰信号,它是电流 i1 回路通过电磁感应其它电路与大地或机壳组成的回路产生的,并且其它电路与大地或机壳是通过电容耦合构成回路的,共模干扰信号可以通过电源线与大地传导到电网其它线路之中和干扰其它电子设备。与电源开关管 V1 的集电极相连的电路,也是产生共模干扰信号的主要原因,因为在整个开关电源电路中,数电源开关管 V1 集电极的电位最高,最高可达6
14、00V 以上,其它电路的电位都比它低,因此电源开关管 V1 的集电极与其它电路(也包括电源输入端的引线)之间存在很强的电场,在电场的作用下,电路会产生位移电流,这个位移电流基本属于共模干扰信号。图 2 中的电容器 C1、C2 和差模电感器 L1 对 i1、i2 和 i3 差模干扰信号有很强的抑制能力。由于 C1、C2 在电源线拔出时还会带电,容易触电伤人,所以在电源输入的两端要接一个放电电阻 R1。对共模干扰信号 i4 要进行完全抑制,一般很困难,特别是没有金属机壳屏蔽的情况下,因为在感应产生共模干扰信号的回路中,其中的一个“元器件”是线路板与大地之间的等效电容,此“元器件”的数值一般是不稳定
15、的,进行设计时对指标要留有足够的余量。图 2 中 L2 和 C3、C4 是共模干扰信号抑制电路器件,在输入功率较大的电路中,L2 一般要用两个,甚至三个,其中一个多为环形磁心电感。根据上面分析,产生电磁干扰的原因主要是 i1 流过的主要回路,这个回路主要由电容器 C5、变压器 T1 初级和电源开关管 V1 组成,根据电磁感应原理,这个回路产生的感应电动势为:e=d/dt=SdB/dt (2)式中 e 为感应电动势, 为磁通量,S 电流回路的面积,B 为磁感应密度,其值与电流强度成正比,d/dt 为磁通变化率。由此可见,感应电动势与电流回路的面积成正比。因此要减少电磁干扰,首先是要设法减小电流回
16、路的面积,特别是 i1 电流流过的回路面积。另外,为了减少变压器漏感对周围电路产生电磁感应的影响,一方面要求变压器的漏感要做得小,另一方面一定要在变压器的外围包一层薄铜皮,以构成一个低阻抗短路线圈,把漏感产生的感应能量通过涡流损耗掉。4、对辐射干扰信号的抑制 电磁辐射干扰也是通过电磁感应的方式,由带电体或电流回路及磁感应回路对外产生电磁辐射的。任何一根导体都可以看成是一根电磁感应天线,任何一个电流回路都可以看成是一个环形天线,电感线圈和变压器漏感也是电磁感应辐射的重要器件。要想完全抑制电磁辐射是不可能的,但通过对电路进行合理设计,或者采取部分屏蔽措施,可以大大减轻电磁干扰的辐射。例如,尽量缩短
17、电路引线的长度和减小电流回路的面积,是减小电磁辐射的有效方法;正确使用储能滤波电容,把储能滤波电容尽量近地安装在有源器件电源引线的两端,每个有源器件独立供电,或单独用一个储能滤波电容供电(充满电的电容可以看成是一个独立电源),防止各电路中的有源器件(放大器)通过电源线和地线产生串扰;把电源引线的地和信号源的地严格分开,或对信号引线采取双线并行对中交叉的方法,让干扰信号互相抵消,也是一种减小电磁辐射的有效方法;利用散热片也可以对电磁干扰进行局部屏蔽,对信号引线还可以采取双地线并行屏蔽的方法,让信号线夹在两条平行地线的中间,这相当于双回路,干扰信号也会互相抵消,屏蔽效果非常显著;机器或敏感器件采用
18、金属外壳是最好的屏蔽电磁干扰方法,但非金属外壳也可以喷涂导电材料(如石墨)进行电磁干扰屏蔽。5、对高压的静电的消除图 1 中,如果输出电压高于 1000V,必须考虑静电消除。虽然大多数的开关电源都采取变压器进行“冷热地”隔离,由于“热地”,也叫“初级地”,通过电网可构成回路,当人体接触到“初级地”的时候会“触电”,所以人们都把“初级地”叫做“热地”,表示不能触摸的意思。而“冷地”也叫“次级地”,尽管电压很高,但它与大地不构成回路,当人体接触到“次级地”的时候不会“触电”,因此,人们都把“次级地”叫做“冷地”,表示可以触摸的意思。但不管是“冷地”或者是“热地”,其对大地的电位差都不可能是零,即还
19、是会带电。如彩色电视机中的开关电源,“热地”对大地的电位差大约有 400VP-P(峰峰值),“冷地”对大地的电位差大约有 1500VP-P(峰峰值)。“热地”带电大家比较好理解,而“冷地”带电一般人是难以理解的。那么“冷地”带电这个电压是怎样产生的呢?这个电压是由变压器次级产生的,虽然变压器次级的一端与“冷地”连接,但真正的零电位是在变压器次级线圈的中心,或整流输出滤波电容器介质的中间。这一点我们称为电源的“浮地”,即它为零电位,但又不与大地相连。由此可知“冷地”带电的电压正好等于输出电压的一半,如电视机显像管的高压阳极需要大约 3 万伏的高压,真正的零电位是在高压滤波电容(显像管石墨层之间的
20、电容)的中间,或高压包的中间抽头处,由此可以求出电视机中的冷地与地之间的电压(静电)大约为 15000V。同理,“热地”回路的“浮地”是在储能滤波电容器 C5 的中间,所以“热地”正常带电电压应为整流输出电压的一半,约为 200 VP(峰值),如把开关管导通或截止时产生的反电动势也叠加在其之上,大约有 400VP-P(峰峰值)。图 2 中的 R3 就是用来降低冷地与大地之间静电电压的,C8 的作用是降低“冷热”地之间的动态电阻。一般数字电路 IC 的耐压都很低,如果“冷地”带电的电压很高,通过静电感应,或人体触摸,很容易就会把 IC 击穿。顺便指出,“冷地”带电是属于静电的范畴,它只相当于对一
21、个小电容充电,这个小电容的一端是大地,另一端是“冷地”,电容量相当于“冷地”对大地之间的等效电容。另外,图 2 中的 C1、C2、C3、C4、C8、R1、R8、T1 属于安全器件,使用时要注意安全要求。结束语电磁兼容设计在我国是一门很崭新的科学,电磁兼容性 EMC 的相关标准还很不完善,很多测试方法或定量分析还需要人们进一步去摸索和探讨,很多新的电磁兼容性 EMC 设计理论还需人们去创立。本文所涉及的一些电磁兼容设计的知识极为肤浅,内容只是冰山一角,希望我国的科学工作者和工程技术人员,在这一方面能够赶超世界水平,多为国家作贡献。作者:陶显芳,康佳集团研究所所长、高级工程师附录EMC 常用标准:
22、EMC 通用系列标准:IEC61000-4-X工业环境抗扰度通用标准:EN50082-2脉冲电流谐波测试标准:IEC61000-3-2交流电源闪烁测试标准:IEC61000-3-3常见缩略语:ECD(Electric circuit design):电路设计EMC(Electromagnetic Compatibility):电磁兼容性EMCD(Electromagnetic Compatibility design):电磁兼容设计EMI(Electromagnetic Interference):电磁干扰PFC(Power Factor corrector):功率因素矫正EMS(Electromagnetic Susceptibility):电磁抗扰度CISPR:国际无线电干扰特别委员会IEC(International Electromagnetic Commission):国际电工委员会EUT(Equipment Under Test )受试设备FCC(Federal Communication Commission)联邦通信委员会CE(Conformite Europeene“)欧盟