1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)湛河区高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知 a0,实数 x,y 满足: ,若 z=2x+y 的最小值为 1,则 a
3、=( )A2 B1 C D2 定义新运算:当 ab 时, ab=a;当 ab 时,ab=b 2,则函数 f(x)= (1 x)x (2 x),x 2,2的最大值等于( )A1 B1 C6 D123 若命题“p 或 q”为真,“非 p”为真,则( )Ap 真 q 真 Bp 假 q 真 Cp 真 q 假 Dp 假 q 假4 下列函数中,既是奇函数又在区间(0,+)上单调递增的函数为( )Ay=x 1 By=lnx Cy=x 3 Dy=|x|5 已知 f(x)为定义在(0 ,+ )上的可导函数,且 f(x)xf (x)恒成立,则不等式 x2f( ) f(x)0 的解集为( )A(0,1) B(1,2
4、) C(1,+) D(2,+)6 已知 F1、F 2是椭圆的两个焦点,满足 =0 的点 M 总在椭圆内部,则椭圆离心率的取值范围是( )A(0,1) B( 0, C(0, ) D ,1)7 若, ,则不等式 成立的概率为( ),b21abA B C D6848 三个实数 a、b、c 成等比数列,且 a+b+c=6,则 b 的取值范围是( )A6,2 B6,0)( 0,2 C2,0)( 0,6 D(0,29 抛物线 y=8x2的准线方程是( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它
5、所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种
6、情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)Ay= By=2 Cx= Dy= 210已知曲线 的焦点为 ,过点 的直线与曲线 交于 两点,且 ,则2:4yxFC,PQ20FQ的面积等于( )OPQA B C D2332411以过椭圆 + =1(a b0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交 B相切 C相离 D不能确定12函数 y=sin2x+cos2x 的
7、图象,可由函数 y=sin2xcos2x 的图象( )A向左平移 个单位得到 B向右平移 个单位得到C向左平移 个单位得到 D向左右平移 个单位得到二、填空题13等差数列 的前项和为 ,若 ,则 等于_.nanS3716a13S14已知 是第四象限角,且 sin(+ )= ,则 tan( )= 15在直三棱柱中,ACB=90,AC=BC=1,侧棱 AA1= ,M 为 A1B1的中点,则 AM 与平面 AA1C1C 所成角的正切值为( )A B C D16如果直线 3ax+y1=0 与直线(1 2a)x+ay+1=0 平行那么 a 等于 17已知双曲线 x2y2=1,点 F1,F 2为其两个焦点
8、,点 P 为双曲线上一点,若 PF1PF2,则|PF 1|+|PF2|的值为 18运行如图所示的程序框图后,输出的结果是 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛
9、A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)三、解答题19已知定义域为 R 的函数 是奇函数(1)求
10、f(x);(2)判断函数 f(x)的单调性(不必证明);(3)解不等式 f(|x|+1)+f(x)020已知命题 p:x2,4,x 22x2a0 恒成立,命题 q:f(x)=x 2ax+1 在区间 上是增函数若 pq 为真命题,pq 为假命题,求实数 a 的取值范围21已知 p:“直线 x+ym=0 与圆(x 1) 2+y2=1 相交”;q:“方程 x2x+m4=0 的两根异号”若 pq 为真,p为真,求实数 m 的取值范围由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,
11、实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_
12、。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)22已知函数 f(x)=x 3+2bx2+cx2 的图象在与 x 轴交点处的切线方程是 y=5x10(1)求函数 f(x)的解析式;(2)设函数 g(x)=f(x)+ mx,若 g(x)的极值存在,求实数 m 的取值范围以及函数 g(x)取得极值时对应的自变量 x 的值23如图,已知五面体 ABCDE,其中ABC 内接于圆 O,AB 是圆 O 的直径
13、,四边形 DCBE 为平行四边形,且 DC平面 ABC()证明:ADBC()若 AB=4,BC=2 ,且二面角 ABDC 所成角 的正切值是 2,试求该几何体 ABCDE 的体积24如图:等腰梯形 ABCD,E 为底 AB 的中点,AD=DC=CB= AB=2,沿 ED 折成四棱锥 ABCDE,使AC= 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实
14、验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变
15、”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(1)证明:平面 AED平面 BCDE;(2)求二面角 EACB 的余弦值由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是
16、虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点
17、为小明眼睛所在位置)湛河区高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由 z=2x+y,得 y=2x+z,平移直线 y=2x+z,由图象可知当直线 y=2x+z 经过点 C 时,直线 y=2x+z 的截距最小,此时 z 最小即 2x+y=1,由 ,解得 ,即 C(1,1),点 C 也在直线 y=a(x3)上,1=2a,解得 a= 故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法2 【答案】C【解析】解:由题意知当2 x1 时,f(x)=x2,当 1x2
18、时,f(x)=x 32,又 f(x )=x2,f(x)=x 32 在定义域上都为增函数,f(x)的最大值为 f(2)=2 32=6故选 C3 【答案】B【解析】解:若命题“p 或 q”为真,则 p 真或 q 真,由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的
19、像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路
20、图。(D 点为小明眼睛所在位置)若“非 p”为真,则 p 为假,p 假 q 真,故选:B【点评】本题考查了复合命题的真假的判断,是一道基础题4 【答案】D【解析】解:选项 A:y= 在(0,+)上单调递减,不正确;选项 B:定义域为(0,+ ),不关于原点对称,故 y=lnx 为非奇非偶函数,不正确;选项 C:记 f(x)=x 3,f( x)=(x) 3=x3,f(x)=f(x),故 f(x)是奇函数,又y=x 3区间(0,+)上单调递增,符合条件,正确;选项 D:记 f(x)=|x|,f ( x)=|x|=|x|,f(x) f(x),故 y=|x|不是奇函数,不正确故选 D5 【答案】C【解
21、析】解:令 F(x)= ,(x0),则 F(x )= ,f( x) xf(x),F (x) 0,F( x)为定义域上的减函数,由不等式 x2f( )f(x) 0,得: , x, x1,故选:C6 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为 a,b,c, =0,M 点的轨迹是以原点 O 为圆心,半焦距 c 为半径的圆由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛
22、A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右
23、移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)又 M 点总在椭圆内部,该圆内含于椭圆,即 cb,c 2b 2=a2c2e 2= , 0e 故选:C【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答7 【答案】D【解析】考点:几何概型8 【答案】B【解析】解:设此等比数列的公比为 q,a+b+c=6, =6,b= 当 q0 时, =2,当且仅当 q=1 时取等号,此时 b(0,2;当 q0 时,b =6,当且仅当 q=1 时取等号,此时 b6,0)b 的取值范围是6,
24、0)( 0,2故选:B由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”
25、) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题9 【答案】A【解析】解:整理抛物线方程得 x2
26、= y,p=抛物线方程开口向下,准线方程是 y= ,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置10【答案】C【解析】 ,12(,)(1,)(0,xyxy ,20联立可得 ,8m 212112()43yyy 2SOF(由 ,得 或 )120y12y12y考点:抛物线的性质11【答案】C由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A
27、 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移
28、动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:设过右焦点 F 的弦为 AB,右准线为 l,A、B 在 l 上的射影分别为 C、D连接 AC、BD ,设 AB 的中点为 M,作 MNl 于 N根据圆锥曲线的统一定义,可得= =e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD| ,以 AB 为直径的圆半径为 r= |AB|,|MN|= (|AC|+|BD|)圆 M 到 l 的距离|MN|r,可得直线 l 与以 AB 为直径的圆相离故选:C【点评】本题给出椭圆的右焦
29、点 F,求以经过 F 的弦 AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题12【答案】C【解析】解:y=sin2x+cos2x= sin(2x+ ),y=sin2xcos2x= sin(2x )= sin2(x )+ ),由函数 y=sin2xcos2x 的图象向左平移 个单位得到 y= sin(2x+ ),故选:C【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键二、填空题13【答案】 26【解析】试题分析:由题意得,根据等差数列的性质,可得 ,由等差数列的求和3717762aa
30、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
31、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)13137()262aS考点:等差数列的性质和等差数列的和14【答案】 【解析】解: 是第四象限角, ,则 ,又 sin(+ ) = ,cos( + )= cos( )=sin(+
32、 )= ,sin( )=cos(+ )= 则 tan( )= tan( )= = 故答案为: 15【答案】 【解析】解:法 1:取 A1C1的中点 D,连接 DM,则 DMC 1B1,在在直三棱柱中,ACB=90,DM平面 AA1C1C,则MAD 是 AM 与平面 AA1C1C 所的成角,则 DM= ,AD= = = ,则 tanMAD= 法 2:以 C1点坐标原点,C 1A1,C 1B1,C 1C 分别为 X,Y,Z 轴正方向建立空间坐标系,则AC=BC=1 ,侧棱 AA1= ,M 为 A1B1的中点, =( , , ), =(0, 1,0)为平面 AA1C1C 的一个法向量由于玻璃板的两面
33、间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置
34、,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)设 AM 与平面 AA1C1C 所成角为 ,则 sin=| |=则 tan=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将
35、线面夹角问题转化为向量夹角问题是解答本题的关键16【答案】 【解析】解:直线 3ax+y1=0 与直线(1 2a)x+ay+1=0 平行,3aa=1(12a),解得 a=1 或 a= ,经检验当 a=1 时,两直线重合,应舍去故答案为: 【点评】本题考查直线的一般式方程和平行关系,属基础题17【答案】 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验
36、过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”
37、) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:PF 1PF 2,|PF 1|2+|PF2|2=|F1F2|2双曲线方程为 x2y2=1,a 2=b2=1,c 2=a2+b2=2,可得 F1F2=2|PF 1|2+|PF2|2=|F1F2|2=8又P 为双曲线 x2y2=1 上一点,|PF 1|PF2|=2a=2,(|PF 1|PF2|) 2=4因此(|PF 1|+|PF2|) 2=2(|PF 1|2+|PF2|2) (|PF 1|PF2|) 2=12|PF 1|+|PF2|的值为故答案为:【点评】本题根据
38、已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题18【答案】 0 【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出 S=sin +sin +sin 的值,由于 sin 周期为 8,所以 S=sin +sin +sin =0故答案为:0【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查三、解答题19【答案】 【解析】解:(1)因为 f(x )是 R 上的奇函数,所以 f(0)=0,即 =0,解得 b=1;从而有 ;经检验,符合题意;(2)由(1)知,f(x)= =
39、+ ;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次
40、改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)由 y=2x的单调性可推知 f(x)在 R 上为减函数; (3)因为 f(x)在 R 上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)0 等价于 f(1+|x|)f
41、(x),即 f(1+|x|)f(x); 又因 f(x)是 R 上的减函数,由上式推得 1+|x|x,解得 xR20【答案】 【解析】解:x2,4,x 22x2a0 恒成立,等价于 a x2x 在 x2,4恒成立,而函数 g(x)= x2x 在 x2,4递增,其最大值是 g(4)=4,a4,若 p 为真命题,则 a4;f(x)=x 2ax+1 在区间 上是增函数,对称轴 x= ,a 1,若 q 为真命题,则 a1;由题意知 p、q 一真一假,当 p 真 q 假时,a 4;当 p 假 q 真时,a 1,所以 a 的取值范围为(,14,+)21【答案】 【解析】解:若命题 p 是真命题:“直线 x+
42、ym=0 与圆( x1) 2+y2=1 相交” ,则 1,解得 1;若命题 q 是真命题:“方程 x2x+m4=0 的两根异号” ,则 m40,解得 m4若 pq 为真,p 为真,则 p 为假命题,q 为真命题 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它