1、由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变
2、蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)渝中区高级中学 2019-2020 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 在复平面内,复数 所对应的点为 , 是虚数单位,则 ( )1zi(2,1)i
3、zA B C D 3i333i2 在平行四边形 ABCD 中,AC 为一条对角线, =(2,4), =(1,3),则 等于( )A(2,4) B(3,5) C( 3,5) D(2,4)3 已知函数 f(x)=x 4cosx+mx2+x(m R),若导函数 f(x)在区间2,2上有最大值 10,则导函数f(x)在区间 2,2上的最小值为( )A12 B10 C 8 D64 已知集合 A=x|x0,且 AB=B,则集合 B 可能是( )Ax|x0 Bx|x 1 C1,0 ,1 DR5 函数 f(x)=sinx(0)在恰有 11 个零点,则 的取值范围( )A C D时,函数 f(x)的最大值与最小
4、值的和为( )Aa+3 B6 C2 D3a6 直线 x2y+2=0 经过椭圆 的一个焦点和一个顶点,则该椭圆的离心率为( )A B C D7 已知一元二次不等式 f( x)0 的解集为x|x 1 或 x ,则 f(10 x)0 的解集为( )Ax|x1 或 xlg2 Bx| 1xlg2Cx|xlg2 Dx|x lg28 已知等比数列a n的第 5 项是二项式(x+ ) 4 展开式的常数项,则 a3a7( )A5 B18 C24 D369 若复数 z= (其中 aR,i 是虚数单位)的实部与虚部相等,则 a=( )由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填
5、“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板
6、后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)A3 B6 C9 D1210把函数 y=sin(2x )的图象向右平移 个单位得到的函数解析式为( )Ay=sin(2x ) By=sin(2x+ ) Cy=cos2x Dy= sin2x11抛物线 x2=4y 的焦点坐标是( )A(1,0) B( 0,1) C
7、( ) D( )12如图,网格纸上正方形小格的边长为 1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 633410864224681015 10 5 5 10 15【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力二、填空题13给出下列命题:把函数 y=sin(x )图象上所有点的横坐标缩短到原来的 倍,纵坐标不变,得到函数y=sin(2x );若 , 是第一象限角且 ,则 coscos ;x= 是函数 y=cos(2x+ )的一条对称轴;函数 y=4sin(2x+ )与函数 y=4cos(2x )相同;y
8、=2sin(2x )在是增函数;则正确命题的序号 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选
9、填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)14如图,是一回形图,其回形通道的宽和 OB1 的长均为 1,回形线与射线 OA 交于 A1,A 2,A 3,若从点 O 到点 A
10、3 的回形线为第 1 圈(长为 7),从点 A3 到点 A2 的回形线为第 2 圈,从点 A2 到点 A3 的回形线为第 3 圈依此类推,第 8 圈的长为 15设直线系 M:xcos+(y2)sin =1(02),对于下列四个命题:AM 中所有直线均经过一个定点B存在定点 P 不在 M 中的任一条直线上C对于任意整数 n(n 3),存在正 n 边形,其所有边均在 M 中的直线上DM 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号)16计算 sin43cos13cos43sin13的值为 17已知点 E、F 分别在正方体 的棱 上,且 , ,则面 AEF 与面 A
11、BC 所成的二面角的正切值等于 .18直线 l: ( t 为参数)与圆 C: ( 为参数)相交所得的弦长的取值范围是 三、解答题19在直角坐标系 xOy 中,圆 C 的参数方程 ( 为参数)以 O 为极点,x 轴的非负半轴为极轴建立极坐标系()求圆 C 的极坐标方程;()直线 l 的极坐标方程是 (sin + )=3 ,射线 OM:= 与圆 C 的交点为 O,P,与直线 l的交点为 Q,求线段 PQ 的长由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡
12、烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的
13、同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)20已知函数 f(x)=ax 3+2xa,()求函数 f(x)的单调递增区间;()若 a=n 且 nN*,设 xn 是函数 fn(x)=nx 3+2xn 的零点(i)证明:n 2 时存在唯一 xn 且 ;(i i)若 bn=(1 xn)(1x n+1),记 Sn=b1+b2+bn,证明:S n121已知三次函数 f(x)的导函数 f(x)=3x 23ax,f (0)=b
14、,a、b 为实数(1)若曲线 y=f(x)在点(a+1,f(a+1)处切线的斜率为 12,求 a 的值;(2)若 f(x)在区间1,1上的最小值、最大值分别为 2、1,且 1a2,求函数 f(x)的解析式22(本小题满分 12 分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得到的数据:赞同 反对 合计男 50 150 200女 30 170 200合计 80 320 400由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛
15、A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学
16、也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)()能否有能否有 的把握认为对这一问题的看法与性别有关?97.5%()从赞同“男女延迟退休”的 80 人中,利用分层抽样的方法抽出 8 人,然后从中选出 3 人进行陈述发言,设发言的女士人数为 ,求 的分布列和期望X参考公式: ,22()K)(nadbc()nabcd23对于任意的 nN *,记集合 En=1,2,3,n ,P n= 若集合 A 满足下列条件:AP n;x
17、1, x2A,且 x1x 2,不存在 kN *,使 x1+x2=k2,则称 A 具有性质 如当 n=2 时,E 2=1,2,P 2= x 1,x 2P 2,且 x1x 2,不存在 kN *,使 x1+x2=k2,所以 P2 具有性质 ()写出集合 P3,P 5 中的元素个数,并判断 P3 是否具有性质 ()证明:不存在 A,B 具有性质 ,且 AB= ,使 E15=AB()若存在 A,B 具有性质 ,且 AB= ,使 Pn=AB,求 n 的最大值24已知函数 f(x)= +lnx1(a 是常数,e =2.71828)(1)若 x=2 是函数 f(x)的极值点,求曲线 y=f(x)在点(1,f(
18、1)处的切线方程;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”)
19、。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)(2)当 a=1 时,方程 f(x) =m 在 x ,e 2上有两解,求实数 m 的取值范围;(3)求证:nN*,ln(en)1+ 由于玻璃板的两面间具有一定的厚
20、度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验
21、的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)渝中区高级中学 2019-2020 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D 【解析】解析:本题考查复数的点的表示与复数的乘法运算, , ,选 D21zi(1)23zii2 【答案】
22、C【解析】解: , = =(3,5)故选:C【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力3 【答案】C【解析】解:由已知得 f(x)=4x 3cosxx4sinx+2mx+1,令 g(x)=4x 3cosxx4sinx+2mx 是奇函数,由 f(x)的最大值为 10 知:g(x)的最大值为 9,最小值为9,从而 f(x)的最小值为 9+1=8故选 C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大4 【答案】A【解析】解:由 A=x|x0,且 AB=B,所以 BAA、x|x0=x|x 0=A,故本选项正确;B、x|x1,xR=( ,1 0,+),故本选项错误
23、;C、若 B=1,0,1,则 AB=0,1 B,故本选项错误;D、给出的集合是 R,不合题意,故本选项错误故选:A【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题5 【答案】A【解析】A C D恰有 11 个零点,可得 5 6,求得 1012,故选:A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它
24、与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯
25、视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)6 【答案】A【解析】直线 x2y+2=0 与坐标轴的交点为( 2,0),(0,1),直线 x2y+2=0 经过椭圆 的一个焦点和一个顶点;故 故选 A【点评】本题考查了椭圆的基本性质,只需根据已知条件求出 a,b,c 即可,属于基础题型7 【答案】D【解析】解:由题意可知 f( x)0 的解集为x| 1x ,故可得 f(10 x)0 等价于110 x ,由指数函数的值域为(0,+)一定有 10x1,而 10x 可化为 10x ,即 10x10 lg2,由指数函数的单调性可知:xlg2故选:D8 【答
26、案】D【解析】解:二项式(x+ ) 4 展开式的通项公式为 Tr+1= x42r,令 42r=0,解得 r=2,展开式的常数项为 6=a5,a 3a7=a52=36,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题9 【答案】A【解析】解:复数 z= = = 由条件复数 z= (其中 aR,i 是虚数单位)的实部与虚部相等,得, 18a=3a+6,解得 a=3故选:A由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验
27、选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(
28、6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【点评】本题考查复数的代数形式的混合运算,考查计算能力10【答案】D【解析】解:把函数 y=sin(2x )的图象向右平移 个单位,所得到的图象的函数解析式为:y=sin2(x ) =sin(2x )=sin2x 故选 D【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移 x 加与减,上下平移,y 的另一侧加与减11【答案】B【解析】
29、解:抛物线 x2=4y 中,p=2, =1,焦点在 y 轴上,开口向上,焦点坐标为 (0,1),故选:B【点评】本题考查抛物线的标准方程和简单性质的应用,抛物线 x2=2py 的焦点坐标为(0, ),属基础题12【答案】D【解析】二、填空题13【答案】 由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全
30、重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成
31、像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解析】解:对于,把函数 y=sin(x )图象上所有点的横坐标缩短到原来的 倍,纵坐标不变,得到函数 y=sin(2x ),故正确对于,当 , 是第一象限角且 ,如 =30,=390,则此时有 cos=cos= ,故错误对于,当 x= 时,2x+ = ,函数 y=cos(2x+ )= 1,为函数的最小值,故 x= 是函数 y=cos(2x+ )的一条对称轴,故正确对于,函数 y=4sin(2x+ )=4cos (2x+ )=4cos( 2)=4cos(2x ),故函数 y=4sin(2x+ )与函数 y=4cos(2x
32、 )相同,故正确对于,在上,2x ,函数 y=2sin(2x )在上没有单调性,故错误,故答案为:14【答案】 63 【解析】解:第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23第 n 圈长为:n+(2n 1)+2n+2n+n=8n1故 n=8 时,第 8 圈的长为 63,故答案为:63【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第 1,2,3,圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形15【答案】BC【解析】【分析】验证发现,直线系 M:xcos +(y2)
33、sin =1(02)表示圆 x2+(y2) 2=1 的切线的集合,AM 中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B存在定点 P 不在 M 中的任一条直线上,观察直线的方程即可得到点的坐标C对于任意整数 n(n 3),存在正 n 边形,其所有边均在 M 中的直线上,由直线系的几何意义可判断,DM 中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛
34、 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同
35、学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)【解答】解:因为点(0,2)到直线系 M:xcos +(y2)sin=1(02)中每条直线的距离 d=1,直线系 M:xcos +(y2)sin=1(02 )表示圆 x2+(y2) 2=1 的切线的集合,A由于直线系表示圆 x2+(y2) 2=1 的所有切线,其中存在两条切线平行,M 中所有直线均经过一个定点(0,2)不可能,故 A 不正确;B存在定点 P 不在 M 中的
36、任一条直线上,观察知点 M(0,2)即符合条件,故 B 正确;C由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数 n(n3),存在正 n 边形,其所有边均在 M 中的直线上,故 C 正确;D如下图,M 中的直线所能围成的正三角形有两类,其一是如ABB型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如 BDC 型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确故答案为:BC16【答案】 【解析】解:sin43cos13 cos43sin13=sin(4313)=sin30 = ,故答案为 17【答案】【解析】延长 EF 交 BC 的延长线于 P,则
37、 AP 为面 AEF 与面 ABC 的交线,因为 ,所以为面 AEF 与面 ABC 所成的二面角的平面角。由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)
38、小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)18【答案】 4 ,16 【解析】解:直线 l: (t 为参数),化为普通
39、方程是 = ,即 y=tanx+1;圆 C 的参数方程 ( 为参数),化为普通方程是(x2) 2+(y1) 2=64;画出图形,如图所示 ;直线过定点(0,1),直线被圆截得的弦长的最大值是 2r=16,最小值是 2 =2 =2 =4弦长的取值范围是4 , 16故答案为:4 ,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题三、解答题19【答案】 【解析】解:(I)圆 C 的参数方程 ( 为参数)消去参数可得:(x 1) 2+y2=1由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或
40、“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上
41、来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能是_。(6)为了让右座的同学也能够看清蜡烛的像,小明只将玻璃板向右平移,则蜡烛像的位置_(选填“向右移动”“向左运动”或“不变”) 。(7)请你在图乙所示的俯视图中,利用平面镜成像的特点,画出小明看到蜡烛 E 的像的光路图。(D 点为小明眼睛所在位置)把 x=cos,y=sin 代入化简得:=2cos ,即为此圆的极坐标方程(II)如图所示,由直线 l 的极坐标方程是 (sin + )=3 ,射线 OM: = 可得普通方程:直线 l ,射线 OM 联立 ,解得 ,即 Q 联立 ,解得 或 P |PQ|= =2【点评】本
42、题考查了极坐标化为普通方程、曲线交点与方程联立得到的方程组的解的关系、两点间的距离公式等基础知识与基本方法,属于中档题20【答案】 【解析】解:()f(x)=3ax 2+2,若 a0,则 f(x)0,函数 f(x)在 R 上单调递增;若 a0,令 f( x)0, 或 ,函数 f(x)的单调递增区间为 和 ;由于玻璃板的两面间具有一定的厚度,而两个面都会成像,为防止重影,实验中选择_(选填“较厚”或“较薄”) 玻璃板实验效果更理想。(2)为了比较蜡烛 A 与它所成的像大小关系,实验选择大小相同的蜡烛 A 和 B。蜡烛 B 应该是_(选填“点燃”或“不点燃”)的,点燃蜡烛 A 的好处是_。(3)在实验过程中,小明移动蜡烛 B,使它与蜡烛 A 的像完全重合,确定了像的位置。为了研究平面镜所成的像是实像还是虚像,小丽用光屏代替蜡烛 B,她_(选填“能”或“不能”) 用光屏接收到蜡烛 A 的像。(4)小明将蜡烛 A 逐渐远离玻璃板时,它的像的大小将_( 选填“变大”“不变”或“变小”) 。实验中多次改 变蜡烛 A 的位置,重复进行实验的目的是_。(5)此时用另一支完全相同的蜡烛在玻璃板后的纸面上来回移动,发现无法让它与蜡烛 A 的像完全重合。你分析出现这种情况的原因可能